Sears Canada Inc. Supplemental Soil Vapour Monitoring Points Installation and Monitoring Report

Hounsfield Heights and North Hill Mall Calgary, Alberta

Clifton Associates

Calgary Office 2222 30th Avenue NE Calgary, Alberta T2E 7K9

T (403) 263 2556 F (403) 234 9033

calgary@clifton.ca www.clifton.ca 20June 2019 CG2430.1E11

Sears Canada Inc. Supplemental Soil Vapour **Monitoring Points Installation and Monitoring Report** Hounsfield Heights and North Hill Mall

Calgary, Alberta

Clifton Associates SSVMPI & M Report CG2430.1E11

Table of Contents

1.0 Introduction	1
2.0 Confirmatory Soil Vapour Sampling	2
3.0 Communication with the Property-Owners	2
4.0 Additional Soil Vapour Monitoring Points Installation	3
5.0 Supplemental Soil Vapour Monitoring	3
6.0 Sampling Results	4
6.1 External Soil Vapour Monitoring Point	4
6.2 Estimates of Indoor Air Quality	4
7.0 Discussion of Results and Recommendations	4
8.0 Closure	5
Reference List	7

Appendices

Appendix A: Figures

Appendix B: Analytical Results Tables Appendix C: Certificates of Analysis Clifton Associates SSVMPI & M Report CG2430.1E11

1.0 Introduction

Clifton Associates Ltd. (Clifton) is pleased to present this Supplemental Soil Vapour Monitoring Points Installation and Monitoring Report (Report) prepared for the account of Sears Canada Inc., to the stakeholders. The Report describes in detail the activities in the Hounsfield Heights community and North Hill Mall area within the City of Calgary (the Site) conducted by Clifton in March and May 2019.

Since 1998, site investigations have revealed the presence of PHCs in the subsurface soils and groundwater beneath City of Calgary properties in the Hounsfield Heights community in Calgary, Alberta. The source of the PHCs is suspected to be a former gasoline station on the property owned by Sears located at the North Hill Shopping Centre as stipulated in the 2014 Updated SMP. Evidence suggests that gasoline may have leaked from underground fuel storage tanks prior to their removal in the mid-1990s when the gasoline station was decommissioned.

As a part of the updated SMP for the Site, a community-wide soil vapour monitoring program was carried out by Clifton since 2016. The monitoring program at the Site is conducted in accordance with the Clifton Associates Ltd.: Sears Canada Inc., Revised Soil Vapour Monitoring Program (Update Fall 2016), Hounsfield Heights and North Hill Mall, Calgary, Alberta document approved by the regulator (Alberta Environment and Parks), utilizing an established network of the soil vapour monitoring points at the Site shown in Appendix A, Figure 1.

The soil vapour analytical laboratory results collected during the Winter 2019 sampling event showed that vapour migration from groundwater or soil at the Site in the vicinity of the soil vapour monitoring point SV32 might be an active exposure pathway of concern for indoor vapour inhalation. Soil vapour sample ID SV32/1421 collected on 31 January 2019 exceeded the Site-specific guidelines for soil vapour quality as follows:

- Petroleum hydrocarbons Aliphatic sub-fraction C6 C8: recorded value 1,220,000 μg/m3 (Site-specific soil vapour quality guideline: 915,445 μg/m3);
- Napthalene: recorded value (up to) 1,200 μg/m3 (Site-specific soil vapour quality guideline: 103 μg/m3);
 and
- 1,2 Dichloroethane: recorded value (up to) 180 μg/m3 (Site-specific soil vapour quality guideline: 40 μg/m3).

Based upon the above findings, implementation of the Risk Management and Contingency Plan for the Site was recommended that included the following steps:

- Collect confirmatory soil vapour sample from an area of the concern;
- Communicate exceedance and proposed course of further action to the regulator and owners of the potentially affected properties;

- Establish lines of communication with the property owner; arrange meeting outlining reasons for an additional environmental work at the property; discuss with the owner available options; and, obtain the owner's approval with one of the following options (options stated in the order from the most to the least desirable):
- Sub-slab monitoring point installation, followed by concurrent sampling of the sub-slab soil vapour and indoor air quality;
- Additional installation of at least one (but ideally two) external monitoring points located between structure and contaminant source in an approximate distance of 1.0 m from foundation to a depth of 1.0 m below foundation to be sampled concurrently with indoor air quality; and
- Standalone indoor air quality sampling.

2.0 Confirmatory Soil Vapour Sampling

In accordance with the Risk Management and Contingency Plan within the accepted *Revised Soil Vapour Monitoring Program (Update Fall 2016), Hounsfield Heights and North Hill Mall, Calgary, Alberta* (October 2016), the soil vapour monitoring point SV32 was re-sampled on 20 March 2019, and the following exceedances of the applicable guidelines were recorded:

- Benzene: recorded value 332 μg/m³ (Site-specific soil vapour quality guideline: 300 μg/m³);
- Napthalene: recorded value (up to) 97 μg/m³ (Increased monitoring frequency threshold value¹: 92.7 μg/m³); and
- 1,2 Dichloroethane: recorded value (up to) 37 μg/m³ (Increased monitoring frequency threshold value: 36 μg/m³).

Recorded concentrations confirmed exceedances for some of the investigated compounds, and requirement to implement further investigative steps per the Risk Management and Contingency Plan.

Complete analytical results for the confirmatory sampling at SV32 can be found in Appendix B, Table 1.

3.0 Communication with the Property-Owners

Considering the location of SV32, six properties were identified within the Contingency Plan radius. The Contingency Plan is described in greater detail in Section 7.0 of the Clifton report titled *Revised Soil Vapour Monitoring Program (Update Fall 2016), Hounsfield Heights and North Hill Mall, Calgary, Alberta (20 October 2016).* As a summary, any concentrations of soil vapour which are within 90-100% of the soil vapour quality guidelines, or exceed the guidelines, require the frequency of sampling to increase to quarterly. In addition, any residences within a 15 m radius of the exceedance are to be contacted in an effort to obtain additional soil vapour quality data from their properties. This may include the advancement

¹ Set as the Site-specific soil vapour quality guideline minus 10%.

of shallow vapour probes, sub-slab vapour probes, obtaining an indoor air sample or a combination of any of the three options.

Clifton's representative contacted the owners of the above properties in March 2019. Communication with residents was completed via phone, email and/or in-person meetings. Residents which could not be contacted through the above methods had a letter detailing the situation left in their mailbox with appropriate instructions.

Currently, the owners of one of the properties located within the Contingency Plan radius of SV32 granted their approval to proceed with an installation of the additional soil vapour monitoring points.

4.0 Additional Soil Vapour Monitoring Points Installation

Clifton installed two additional soil vapour monitoring points in the immediate vicinity of the subject property on 13 May 2019. Both monitoring points were installed in an approximate distance of 1.0 m from the foundations of the residence. A total installation depth of 1.0 m bgs was selected considering water table elevation at the location. One of the points (ID SV321) was installed directly between soil vapour monitoring point SV32 and the residence. Soil vapour monitoring point SV322 was installed along the west wall of the residence.

As per the Risk Management and Contingency Plan within the Soil Vapour Monitoring Program, the two new soil vapour monitoring points will be used to estimate indoor air quality within the residence.

Monitoring points were developed by inserting stainless steel permanent soil vapour implant equipped by stainless steel mesh and PTFE umbrella into a borehole opened by hand auger. The sampling implant was surrounded by an approximately 0.3 m of coarse sand. A competent seal was constructed above the screened zone by using hydraulic cement hydrated in three lifts by distilled water. The installation was finished by attaching a brass needle valve with compression cap at the end of the sampling train and mounting a flush-mounted 101.6 mm casted aluminum cover for protection against elements over the sampling point.

"As-built" cross sections for the installed soil vapour monitoring points are shown in Appendix A, Figures 2 and 3, respectively.

5.0 Supplemental Soil Vapour Monitoring

Installed monitoring points were allowed to equilibrate for at least 48-hours. Prior to the sample collection, monitoring points were checked for seal integrity using helium tracer as shown in Appendix B, Table 4. The points were subsequently purged by the SKC PGX-R8 vacuum pump calibrated for a flow rate of 70

Clifton Associates SSVMPI & M Report CG2430.1E11

mL/min for 20 minutes. Purging vacuum rate thus did not exceeded 10" (254 mm) of water column in order to avoid excessive moisture influx to the radius of influence.

Clifton used as soil vapour sampling media 1.4L Summa canisters, which were proofed and cleaned by the laboratory as per the United States Environmental Protection Agency (USEPA) reference method TO-14A. The sampling train included: an orifice equipped flow controller calibrated for a sampling rate between 20-200 mL/min; and, a length of the dedicated PTFE tubing with stainless steel fitting to connect to a valve at the top of the soil vapour monitoring point. Collected soil vapour samples were forwarded under the Chain-of-Custody protocols to Maxxam Analytics Inc. for analyses.

6.0 Sampling Results

6.1 External Soil Vapour Monitoring Point

Clifton carried out the soil vapour monitoring event at the Site on 16 May 2019. An additional soil vapour sample was collected from the external monitoring point SV32 in accordance with the requirement of the Risk Management and Contingency plan for an increased sampling frequency at this point. There were no recorded exceedances for the investigated Contaminants of Potential Concern (CoPC) compared either to the Soil Vapour Quality Guidelines (SVQG) protective of indoor air quality or to the increased monitoring frequency trigger values.

Complete analytical results for SV32 are presented in Appendix B, Table 2.

6.2 Estimates of Indoor Air Quality

A rough estimate of indoor air quality is based on the soil vapour samples collected from the nearest soil vapour monitoring points. Samples from the soil vapour monitoring points SV321 and SV322, respectively, were therefore used to estimate indoor air quality for the subject property. Albeit these monitoring points have installation depth 1.0 m bgs, and are located approximately 1.0 m outside of the structure foundations, no allowance was made for either vertical, or horizontal biodegradation to add a level of conservativism to the estimate. Analytical results for both samples were therefore compared to SVQG based on default attenuation factors. No exceedances for CoPC criteria protective of indoor air quality were recorded.

Analytical results for soil vapour monitoring points SV321 and SV322 are presented in Appendix B, Table 3.

7.0 Discussion of Results and Recommendations

The soil vapour analytical laboratory results collected during the supplemental sampling event on 16 May 2019 were all below the regulatory guidelines for risks to human health and therefore, the vapour intrusion pathway into the residential structure should not pose immediate health risk for the occupants, and as such, an immediate application of exposure controls is not deemed necessary.

Analytical results for the monitoring point SV32 show a marked decline in concentrations of the CoPC compared to the confirmatory sample, which can be explained by different levels of the biodegradation and water table elevation variations caused by a time lapse between sampling rounds (March vs. May). Considering known temporal and spatial variations in soil vapour concentrations, vapour migration from groundwater or soil at the Site in the vicinity of the soil vapour monitoring point SV32 is still to be considered as an exposure pathway of a potential concern for indoor vapour inhalation.

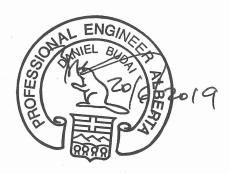
In view of the above mentioned, the recommended further course of action at the Site should include the following steps:

- Soil vapour monitoring point SV32 should be sampled seasonally (i.e., four times a year) until five consecutive readings below 90% of SVQG for all investigated CoPC are recorded;
- Soil vapour monitoring points SV321 and SV322 should be re-sampled during winter 2019-2020 to confirm that the exposure pathway for indoor vapour inhalation is not active at the times of a year with minimum biodegradation and maximum stack effect; and
- Soil vapour monitoring points SV321 and SV322 should be automatically re-sampled in the case of any future SVQG exceedances recorded at SV32.

Possible future mitigation actions/exposure control implementation at the Site will depend on the results obtained from additional environmental investigation described above.

8.0 Closure

This report was prepared by Clifton Associates Ltd. for the account of Sears Canada Inc. The material in it reflects Clifton Associates Ltd. best judgment available to it at the time of preparation. Any use that a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Clifton Associates Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.


This report has been prepared in accordance with generally accepted engineering practice common to the local area. No other warranty expressed or implied is made.

This report focuses exclusively at indoor air quality in the investigated buildings. No conclusions should be made based on this report regarding any concentrations of substances in other areas of the Site. Other Contaminants of Concern may be present at the Site in areas that were not investigated. Clifton Associates Ltd. accepts no responsibility for any deficiencies or inaccuracies in the information provided in this report that are the direct result of intentional or unintentional misrepresentations, errors or omissions of the persons interviewed, or information reviewed.

No environmental site investigation or remediation can wholly eliminate uncertainty regarding environmental conditions in connection with a property. This investigation is intended to reduce, but not eliminate the uncertainty regarding environmental conditions. Conclusions regarding the condition of the Site do not represent a warranty that all areas within the site and beneath structures are of the same quality as those sampled. Further, contamination could also exist in forms not indicated by the investigation.

The work was based in part upon the environmental quality guidelines and regulations in effect when the work was begun. Future regulatory changes may require reassessment of the findings of this investigation.

Yours truly, Clifton Associates Ltd.

Daniel Budai P.Eng. Environmental Engineer GEOLOGISA SELLAM MORCONA SEL

William R. Morgan P.Geol. Environmental Geoscientist

Association of Professional Engineers and Geoscientists of Alberta Permit to Practice P4823 Clifton Associates SSVMPI & M Report CG2430.1E11 7

Reference List

Alberta Environment and Parks. (2016). Alberta Tier 1 Soil and Groundwater Remediation Guidelines

Alberta Environment and Parks. (2016). Alberta Tier 2 Soil and Groundwater Remediation Guidelines

The United States Environmental Protection Agency. Compendium of Methods for the Determination of Compounds in Ambient Air, Second Edition, Compendium Method TO-15, Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GCMS). EPA/625/R96/01b, 1999.

Clifton Associates Ltd.: Subsurface Investigation-Mall Area and Hounsfield Heights, 22 January 2016

Clifton Associates Ltd.: Updated Site Management Plan (2014), Hounsfield Heights-Briar Hill Community, Calgary, Alberta, April 2014

Intrinsik Environmental Sciences Inc.: Draft Report, Human Health and Ecological Risk Assessment for the Hounsfield Heights Community and North Hill Mall, Calgary, Alberta, December 2015

Canadian Council of Ministers of the Environment: A Protocol for the Derivation of Soil Vapour Quality Guidelines for Protection of Human Exposures via Inhalation of Vapors, 2014

British Columbia Ministry of Environment: *Technical Guidance on Contaminated Sites 4,* version 1, September 2010

Health Canada: Federal Contaminated Site Risk Assessment in Canada, Part VII: Guidance for Soil Vapour Intrusion Assessment at Contaminated Sites, September 2010

Johnson, P.C., & R. Ettinger: *Heuristic Model for predicting the Intrusion Rate of Contaminant Vapours into Buildings*, 1991

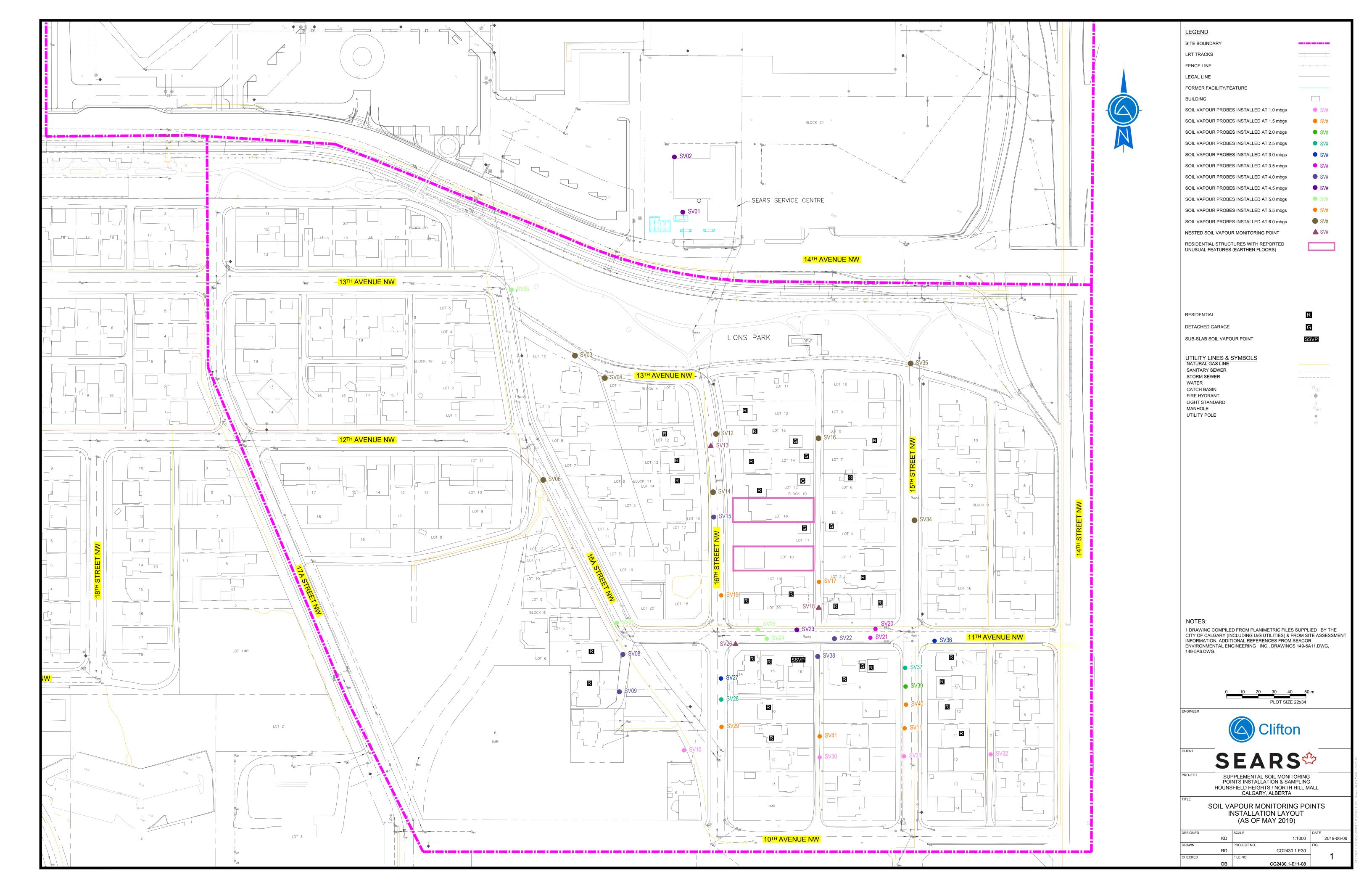
Pennsylvania Department of Environmental Protection: Land Recycling Program Technical Guidance for Vapor Intrusion into Buildings from Groundwater and Soil under Act 2. 2015.

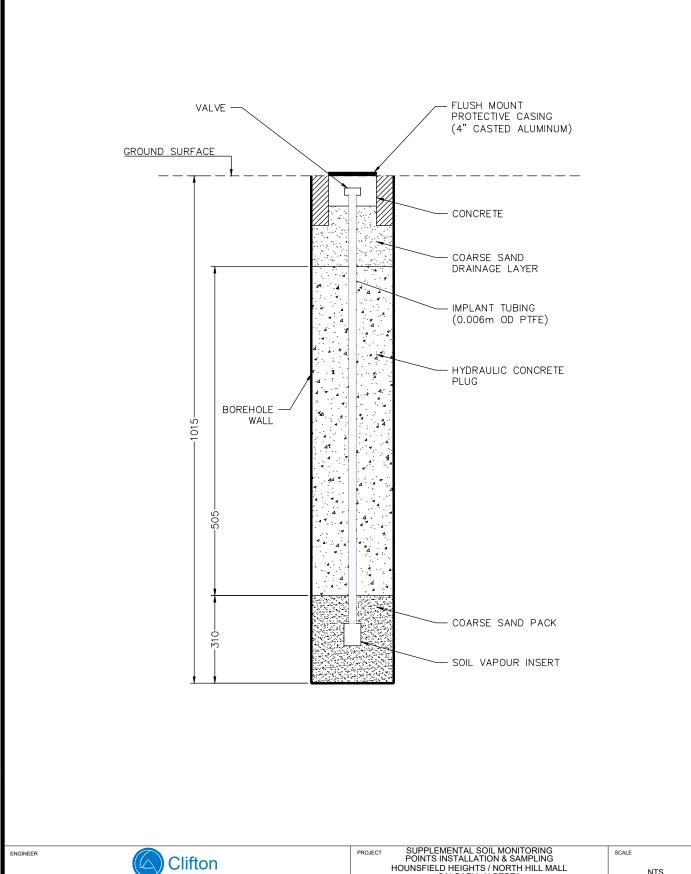
Clifton Associates Ltd.: Sears Canada Inc., Revised Soil Vapour Monitoring Program (Update Fall 2016), Hounsfield Heights and North Hill Mall, Calgary, Alberta, 20 October 2016.

Clifton Associates Ltd.: Sears Canada Inc., Soil Vapour Monitoring Points Installation Report, Hounsfield Heights and North Hill Mall, Calgary, Alberta, 20 October 2016.

Appendix A

Clifton Associates Figures


Clifton Associates



Calgary Office 2222 30th Avenue NE Calgary, Alberta T2E 7K9

T (403) 263 2556 F (403) 234 9033

calgary@clifton.ca www.clifton.ca

ENGINEER	Clifton		PROJECT SUPPLEMENTAL SOIL MONITORING POINTS INSTALLATION & SAMPLING HOUNSFIELD HEIGHTS / NORTH HILL MALL CALGARY, ALBERTA	SCALE NTS
CLIENT	SEARS	ry	SOIL VAPOUR MONITORING POINT SV321 "AS BUILT" CROSS SECTION	DRAWING NO.
PROJECT NO.	FILE NO.	DATE	3V321 AS BOILT CROSS SECTION	_
CG2430.1 E11	CG2430.1-E11-10.dwg			

CG2430.1-E11-09.dwg

CG2430.1 E11

SV322 "AS BUILT" CROSS SECTION

Appendix B

Clifton Associates Analytical Results Tables

Clifton Associates

Calgary Office
2222 30th Avenue NE
Calgary, Alberta T2E 7K9

T (403) 263 2556 F (403) 234 9033

calgary@clifton.ca www.clifton.ca

Table 1 - Summary of Soil Vapour Laboratory Analysis Chemicals of Potential Concern in Soil Vapour

Soil Vapour Samples-Residential Buildings-Installation Depth 1.0 m bgs

Sample ID	RDL	SV32CS/	1521		
Installation Depth (m bgs)		1.0		Guideline ¹	Guideline ³
Sampling Date		20-Mar	-19		
Parameter					
Benzene	30	332		300.0	270.0
Toluene	35	1030		187900.0	169110.0
Ethylbenzene	40	<40		49625.0	44662.5
Xylenes	120	<120)	8909.0	8018.1
Aliphatic C6-C8 ²	460	13067	0	915445.0	823900.5
Aliphatic C8-C10	460	<460)	48060.0	43254.0
Aromatic C8_C10	460	<460)	8125.0	7312.5
Aliphatic >C10-C12	460	<460)	50000.0	45000.0
Aliphatic >C12-C16	460	<460)	50000.0	45000.0
Aromatic >C10-C12	460	<460)	10000.0	9000.0
Aromatic >C12-C16	460	<460)	10000.0	9000.0
1,2-Dichloroethane (1,2-DCA)	37	<37		40.0	36.0
Naphtalene	97	<97		103.0	92.7
Oxygen (% v/v)	0.2	14.1		N/A	N/A
Nitrogen (% v/v)	0.2	83.5		N/A	N/A
Methane (% v/v)	0.2	<0.2		N/A	N/A
Carbon Dioxide (% v/v)	0.2	2.5		N/A	N/A

Notes:

1 Soil vapour quality guidelines protective of indoor air quality for a residential building on fine-textured soil, depth < 100 cm, Intrinsik 31/8/2016

Indicates that the concentration exceeds guideline 1

Indicates that the concentration exceeds guideline 3

- 2 Aliphatic C6-C8 values calculated by summing Aliphatic >C5-C6 and Aliphatic >C6-C8 fractions
- 3 Inreased monitoring frequency trigger values

RDL Reportable Detection Limit

NG No applicable guideline

All results are expressed as µg/m³ unless otherwise noted.

Testing was conducted by Maxxam Analytics Inc.

Job No.	CG2430.1E11
Client	Sears Canada Inc.
Project	Confirmatory Sampling, Winter 2019
Location	Calgary, Alberta

Table 2 - Summary of Soil Vapour Laboratory Analysis Chemicals of Potential Concern in Soil Vapour

Soil Vapour Samples-Residential Buildings-Installation Depth 1.0 m bgs

<u>-</u>	-	_	-	_	
Sample ID	RDL	32			
Installation Depth (m bgs)		1.0		Guideline ¹	Guideline ³
Sampling Date		16-May-19			
Parameter					
Benzene	0.319	10.1		300.0	270.0
Toluene	0.377	225		187900.0	169110.0
Ethylbenzene	0.434	< 0.434		49625.0	44662.5
Xylenes	1.30	1.94		8909.0	8018.1
Aliphatic C6-C8 ²	5.0	2244		915445.0	823900.5
Aliphatic C8-C10	5.0	22.6		48060.0	43254.0
Aromatic C8_C10	5.0	<5.0		8125.0	7312.5
Aliphatic >C10-C12	5.0	7.1		50000.0	45000.0
Aliphatic >C12-C16	5.0	<5.0		50000.0	45000.0
Aromatic >C10-C12	5.0	<5.0		10000.0	9000.0
Aromatic >C12-C16	5.0	<5.0		10000.0	9000.0
1,2-Dichloroethane (1,2-DCA)	0.405	0.482		40.0	36.0
Naphtalene	1.05	<1.05		103.0	92.7
Oxygen (% v/v)	0.2	20.2		N/A	N/A
Nitrogen (% v/v)	0.2	77.9		N/A	N/A
Methane (% v/v)	0.2	<0.2		N/A	N/A
Carbon Dioxide (% v/v)	0.2	2.0		N/A	N/A

Notes:

1 Soil vapour quality guidelines protective of indoor air quality for a residential building on fine-textured soil, depth < 100 cm, Intrinsik 31/8/2016

Indicates that the concentration exceeds guideline 1 Indicates that the concentration exceeds guideline 3

- 2 Aliphatic C6-C8 values calculated by summing Aliphatic >C5-C6 and Aliphatic >C6-C8 fractions
- 3 Inreased monitoring frequency trigger values

RDL Reportable Detection Limit

NG No applicable guideline

All results are expressed as $\mu g/m^3$ unless otherwise noted.

Testing was conducted by Maxxam Analytics Inc.

Job No.	CG2430.1E11
Client	Sears Canada Inc.
Project	Supplemental Sampling, 2019
Location	Calgary, Alberta

Table 3 - Summary of Soil Vapour Laboratory Analysis Chemicals of Potential Concern in Soil Vapour

Estimate of Indoor Air Quality for Residential Property

Sample ID	RDL	321	322	0
Sampling Date		16-May-19	16-May-19	Guideline ¹
Parameter				
Benzene	0.319	<0.638	<0.319	3.0E+02
Toluene	0.377	3.59	2.06	1.9E+05
Ethylbenzene	0.434	1.85	1.25	5.0E+04
Xylenes	1.30	10.7	8.02	8.9E+03
Aliphatic C6-C8 ²	5.0	<20.0	<10.0	9.2E+05
Aliphatic C8-C10	5.0	46	11.3	4.8E+04
Aromatic C8_C10	5.0	18	13.6	8.1E+03
Aliphatic >C10-C12	5.0	1840	250	5.0E+04
Aliphatic >C12-C16	5.0	265	73.2	5.0E+04
Aromatic >C10-C12	5.0	37	27.8	1.0E+04
Aromatic >C12-C16	5.0	<10	<5.0	1.0E+04
1,2-Dichloroethane (1,2-DCA)	0.405	<0.810	<0.405	4.0E+01
Naphtalene	1.05	<2.10	<1.05	1.0E+02
Oxygen (% v/v)	0.2	ND	22.2	NG
Nitrogen (% v/v)	0.2	ND	76.7	NG
Methane (% v/v)	0.2	ND	<0.2	NG
Carbon Dioxide (% v/v)	0.2	ND	1.1	NG

Notes:

1 Soil vapour quality guidelines protective of indoor air quality for a residential building on fine-textured soil, depth < 100 cm, Intrinsik 31/8/2016

Indicates that the concentration exceeds guideline

2 Aliphatic C6-C8 values calculated by summing Aliphatic >C5-C6 and Aliphatic >C6-C8 fractions

RDL Reportable Detection Limit

NG No applicable guideline

ND No data

All results are expressed as $\mu g/m^3$ unless otherwise noted.

Testing was conducted by Maxxam Analytics Inc.

Job No.	CG2430.1E11
Client	Sears Canada Inc.
Project	Supplemental Sampling, 2019
Location	Calgary, Alberta

Table 4 - Summary of Integrity Testing by Helium Tracer

SVMP ID		SV32	SV32	SV321	SV322				
Installation Date		01-Jun-16	01-Jun-16	13-May-19	13-May-19				
Testing Date Date		20-Mar-19	16-May-19	16-May-19	16-May-19				
Helium Analyzer	Units	MGD 2002	MGD 2002	MGD 2002	MGD 2002				
Initial Recorded He Shroud Concentration	%	16.1	12.3	38.2	30.5				
Final He Concentration after Purge	%	0.040	0.025	0.05	0.75				
Difference	%	99.752	99.797	99.869	97.541				
Integrity Test Result	PASS/FAIL	PASS	PASS	PASS	PASS				

Notes:

He 99.99% commercial grade helium tracer Testing conducted by Clifton Associates Ltd.

Job No. CG2430.1E11 Client Sears Canada Inc.

Project Confirmatory/Supplemental Sampling, 2019

Location Calgary, Alberta

Appendix C

Clifton Associates Certificates of Analyses

Clifton Associates

Calgary Office
2222 30th Avenue NE
Calgary, Alberta T2E 7K9

T (403) 263 2556 F (403) 234 9033

calgary@clifton.ca www.clifton.ca

Your Project #: CG2430.1E11
Site Location: SEARS CANADA

Your C.O.C. #: 40864

Attention: Stephen Dabadie

Clifton Associates Ltd. 2222 30 Ave. NE Calgary, AB CANADA T2E 7K9

Report Date: 2019/03/28

Report #: R5647437 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B973248 Received: 2019/03/21, 08:27

Sample Matrix: Air # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
BTEX and CCME Compounds in Air(TO-15mod)	1	N/A	2019/03/21	BRL SOP-00304	EPA TO-15 m
BTEX Fractionation in Air (TO-15mod)	1	N/A	2019/03/21	BRL SOP-00304	EPA TO-15 m
Canister Pressure (TO-15)	1	N/A	2019/03/21	BRL SOP-00304	EPA TO-15 m
Matrix Gases (1)	1	N/A	2019/03/27	CAM SOP-00225	GC/TCD
Volatile Organics in Air (ug/m3)	1	N/A	2019/03/25	BRL SOP-00304	EPA TO-15 m
Volatile Organics in Air (TO-15) (2)	1	N/A	2019/03/21	BRL SOP-00304	EPA TO-15 m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Argon interferes with Oxygen and is included in the reported Oxygen concentration. The atmosphere contains about 0.9% Argon.
- (2) Air sampling canisters have been cleaned in accordance with U.S. EPA Method TO15. At the end of the cleaning, evacuation, and pressurization cycles, one canister was selected and was pressurized with Zero Air. This canister was then analyzed via TO15 on a GC/MS. The canister must have been found to contain <0.2 ppbv concentration of all target analytes in order for the batch to have been considered clean. Each canister also underwent a leak check prior to shipment.

Please Note: SUMMA® canister samples will be retained by Maxxam for a period of 5 calendar days or as contractually agreed from the date of this report, after which time they will be cleaned for reuse. If you require a longer sample storage period, please contact your service representative.

Your Project #: CG2430.1E11
Site Location: SEARS CANADA

Your C.O.C. #: 40864

Attention: Stephen Dabadie

Clifton Associates Ltd. 2222 30 Ave. NE Calgary, AB CANADA T2E 7K9

Report Date: 2019/03/28

Report #: R5647437 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B973248 Received: 2019/03/21, 08:27

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.
Cristina (Maria) Bacchus, Project Manager
Email: CBacchus@maxxam.ca
Phone# (905)817-5763

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Clifton Associates Ltd.

Client Project #: CG2430.1E11 Site Location: SEARS CANADA

Sampler Initials: DB

RESULTS OF ANALYSES OF AIR

Maxxam ID		JGE659					
	-	2019/03/20					
Sampling Date		2019/03/20					
COC Number		40864					
	UNITS	SV32CS/1521	QC Batch				
Volatile Organics							
Pressure on Receipt	psig	(-2.9)	6031827				
QC Batch = Quality Control Batch							

Clifton Associates Ltd.

Client Project #: CG2430.1E11
Site Location: SEARS CANADA

Sampler Initials: DB

COMPRESSED GAS PARAMETERS (AIR)

Maxxam ID		JGE659	JGE659					
Sampling Date		2019/03/20	2019/03/20					
COC Number		40864	40864					
	UNITS	SV32CS/1521	SV32CS/1521 Lab-Dup	RDL	QC Batch			
Fixed Gases								
Oxygen	% v/v	14.1	14.1	0.2	6039478			
Nitrogen	% v/v	83.5	83.5	0.2	6039478			
Methane	% v/v	<0.2	<0.2	0.2	6039478			
				0.2	6039478			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Clifton Associates Ltd.
Client Project #: CG2430.1E11
Site Location: SEARS CANADA

Sampler Initials: DB

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		JGE659	JGE659		
Sampling Date		2019/03/20	2019/03/20		
COC Number		40864	40864		
	UNITS	SV32CS/1521	SV32CS/1521 Lab-Dup	RDL	QC Batch
Volatile Organics					
Dichlorodifluoromethane (FREON 12)	ppbv	<19	<19	19	6029925
1,2-Dichlorotetrafluoroethane	ppbv	<16	<16	16	6029925
Chloromethane	ppbv	<28	<28	28	6029925
Vinyl Chloride	ppbv	<9.3	<9.3	9.3	6029925
Chloroethane	ppbv	<28	<28	28	6029925
1,3-Butadiene	ppbv	<46	<46	46	6029925
Trichlorofluoromethane (FREON 11)	ppbv	<19	<19	19	6029925
Ethanol (ethyl alcohol)	ppbv	<93	<93	93	6029925
Trichlorotrifluoroethane	ppbv	<14	<14	14	6029925
2-propanol	ppbv	<93	<93	93	6029925
2-Propanone	ppbv	<56	<56	56	6029925
Methyl Ethyl Ketone (2-Butanone)	ppbv	<19	<19	19	6029925
Methyl Isobutyl Ketone	ppbv	<19	<19	19	6029925
Methyl Butyl Ketone (2-Hexanone)	ppbv	<93	<93	93	6029925
Methyl t-butyl ether (MTBE)	ppbv	<19	<19	19	6029925
Ethyl Acetate	ppbv	<93	<93	93	6029925
1,1-Dichloroethylene	ppbv	<9.3	<9.3	9.3	6029925
cis-1,2-Dichloroethylene	ppbv	<9.3	<9.3	9.3	6029925
trans-1,2-Dichloroethylene	ppbv	<9.3	<9.3	9.3	6029925
Methylene Chloride(Dichloromethane)	ppbv	<56	<56	56	6029925
Chloroform	ppbv	<9.3	<9.3	9.3	6029925
Carbon Tetrachloride	ppbv	<9.3	<9.3	9.3	6029925
1,1-Dichloroethane	ppbv	<9.3	<9.3	9.3	6029925
1,2-Dichloroethane	ppbv	<9.3	<9.3	9.3	6029925
Ethylene Dibromide	ppbv	<9.3	<9.3	9.3	6029925
1,1,1-Trichloroethane	ppbv	<9.3	<9.3	9.3	6029925
1,1,2-Trichloroethane	ppbv	<9.3	<9.3	9.3	6029925
1,1,2,2-Tetrachloroethane	ppbv	<9.3	<9.3	9.3	6029925
cis-1,3-Dichloropropene	ppbv	<9.3	<9.3	9.3	6029925
trans-1,3-Dichloropropene	ppbv	<9.3	<9.3	9.3	6029925
1,2-Dichloropropane	ppbv	<9.3	<9.3	9.3	6029925
Bromomethane	ppbv	<9.3	<9.3	9.3	6029925
Bromoform	ppbv	<19	<19	19	6029925
Bromodichloromethane	ppbv	<19	<19	19	6029925
DDI Damantable Detection Lineit	1				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Clifton Associates Ltd.
Client Project #: CG2430.1E11
Site Location: SEARS CANADA

Sampler Initials: DB

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		JGE659	JGE659		
Sampling Date		2019/03/20	2019/03/20		
COC Number		40864	40864		
	UNITS	SV32CS/1521	SV32CS/1521 Lab-Dup	RDL	QC Batch
Dibromochloromethane	ppbv	<19	<19	19	6029925
Trichloroethylene	ppbv	<9.3	<9.3	9.3	6029925
Tetrachloroethylene	ppbv	<9.3	<9.3	9.3	6029925
Benzene	ppbv	104	102	9.3	6029925
Toluene	ppbv	273	274	9.3	6029925
Ethylbenzene	ppbv	<9.3	<9.3	9.3	6029925
p+m-Xylene	ppbv	<19	<19	19	6029925
o-Xylene	ppbv	<9.3	<9.3	9.3	6029925
Styrene	ppbv	<9.3	<9.3	9.3	6029925
4-ethyltoluene	ppbv	<46	<46	46	6029925
1,3,5-Trimethylbenzene	ppbv	<46	<46	46	6029925
1,2,4-Trimethylbenzene	ppbv	<46	<46	46	6029925
Chlorobenzene	ppbv	<9.3	<9.3	9.3	6029925
Benzyl chloride	ppbv	<46	<46	46	6029925
1,3-Dichlorobenzene	ppbv	<37	<37	37	6029925
1,4-Dichlorobenzene	ppbv	<9.3	<9.3	9.3	6029925
1,2-Dichlorobenzene	ppbv	<9.3	<9.3	9.3	6029925
1,2,4-Trichlorobenzene	ppbv	<46	<46	46	6029925
Hexachlorobutadiene	ppbv	<46	<46	46	6029925
Hexane	ppbv	<19	<19	19	6029925
Heptane	ppbv	<28	<28	28	6029925
Cyclohexane	ppbv	<19	<19	19	6029925
Tetrahydrofuran	ppbv	<37	<37	37	6029925
1,4-Dioxane	ppbv	<93	<93	93	6029925
Naphthalene	ppbv	<19	<19	19	6029925
Total Xylenes	ppbv	<28	<28	28	6029925
1,1,1,2-Tetrachloroethane	ppbv	<9.3	<9.3	9.3	6029925
Vinyl Bromide	ppbv	<19	<19	19	6029925
Propene	ppbv	<46	<46	46	6029925
2,2,4-Trimethylpentane	ppbv	10600	10500	19	6029925
Carbon Disulfide	ppbv	<46	<46	46	6029925
Vinyl Acetate	ppbv	<19	<19	19	6029925
Surrogate Recovery (%)	•	•	•		
Bromochloromethane	%	96	96		6029925
D5-Chlorobenzene	%	93	91		6029925
RDL = Reportable Detection Limit				•	
QC Batch = Quality Control Batch					
Lab Dun - Laboratory Initiated Dunlie					

Clifton Associates Ltd.

Client Project #: CG2430.1E11
Site Location: SEARS CANADA

Sampler Initials: DB

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		JGE659	JGE659		
Sampling Date		2019/03/20	2019/03/20		
COC Number		40864	40864		
	UNITS	SV32CS/1521	SV32CS/1521	RDL	QC Batch
		•	Lab-Dup		,

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Clifton Associates Ltd.
Client Project #: CG2430.1E11
Site Location: SEARS CANADA

Sampler Initials: DB

CALCULATED VOLATILE ORGANICS (AIR)

Maxxam ID		JGE659	JGE659		
Sampling Date		2019/03/20	2019/03/20		
COC Number		40864	40864		
	UNITS	SV32CS/1521	SV32CS/1521 Lab-Dup	RDL	QC Batch
Calculated Parameters					
Dichlorodifluoromethane (FREON 12)	ug/m3	<91	<91	91	6029948
1,2-Dichlorotetrafluoroethane	ug/m3	<110	<110	110	6029948
Chloromethane	ug/m3	<57	<57	57	6029948
Vinyl Chloride	ug/m3	<24	<24	24	6029948
Chloroethane	ug/m3	<73	<73	73	6029948
1,3-Butadiene	ug/m3	<100	<100	100	6029948
Trichlorofluoromethane (FREON 11)	ug/m3	<100	<100	100	6029948
Ethanol (ethyl alcohol)	ug/m3	<170	<170	170	6029948
Trichlorotrifluoroethane	ug/m3	<110	<110	110	6029948
2-propanol	ug/m3	<230	<230	230	6029948
2-Propanone	ug/m3	<130	<130	130	6029948
Methyl Ethyl Ketone (2-Butanone)	ug/m3	<55	<55	55	6029948
Methyl Isobutyl Ketone	ug/m3	<76	<76	76	6029948
Methyl Butyl Ketone (2-Hexanone)	ug/m3	<380	<380	380	6029948
Methyl t-butyl ether (MTBE)	ug/m3	<67	<67	67	6029948
Ethyl Acetate	ug/m3	<330	<330	330	6029948
1,1-Dichloroethylene	ug/m3	<37	<37	37	6029948
cis-1,2-Dichloroethylene	ug/m3	<37	<37	37	6029948
trans-1,2-Dichloroethylene	ug/m3	<37	<37	37	6029948
Methylene Chloride(Dichloromethane)	ug/m3	<190	<190	190	6029948
Chloroform	ug/m3	<45	<45	45	6029948
Carbon Tetrachloride	ug/m3	<58	<58	58	6029948
1,1-Dichloroethane	ug/m3	<37	<37	37	6029948
1,2-Dichloroethane	ug/m3	<37	<37	37	6029948
Ethylene Dibromide	ug/m3	<71	<71	71	6029948
1,1,1-Trichloroethane	ug/m3	<50	<50	50	6029948
1,1,2-Trichloroethane	ug/m3	<50	<50	50	6029948
1,1,2,2-Tetrachloroethane	ug/m3	<64	<64	64	6029948
cis-1,3-Dichloropropene	ug/m3	<42	<42	42	6029948
trans-1,3-Dichloropropene	ug/m3	<42	<42	42	6029948
1,2-Dichloropropane	ug/m3	<43	<43	43	6029948
Bromomethane	ug/m3	<36	<36	36	6029948
Bromoform	ug/m3		<190	190	6029948
Bromodichloromethane	ug/m3	<120	<120	120	6029948
RDL = Reportable Detection Limit		·		•	

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Clifton Associates Ltd.
Client Project #: CG2430.1E11
Site Location: SEARS CANADA

Sampler Initials: DB

CALCULATED VOLATILE ORGANICS (AIR)

Maxxam ID		JGE659	JGE659		
Sampling Date		2019/03/20	2019/03/20		
COC Number		40864	40864		
	UNITS	SV32CS/1521	SV32CS/1521 Lab-Dup	RDL	QC Batch
Dibromochloromethane	ug/m3	<160	<160	160	6029948
Trichloroethylene	ug/m3	<50	<50	50	6029948
Tetrachloroethylene	ug/m3	<63	<63	63	6029948
Benzene	ug/m3	332	327	30	6029948
Toluene	ug/m3	1030	1030	35	6029948
Ethylbenzene	ug/m3	<40	<40	40	6029948
p+m-Xylene	ug/m3	<80	<80	80	6029948
o-Xylene	ug/m3	<40	<40	40	6029948
Styrene	ug/m3	<39	<39	39	6029948
4-ethyltoluene	ug/m3	<230	<230	230	6029948
1,3,5-Trimethylbenzene	ug/m3	<230	<230	230	6029948
1,2,4-Trimethylbenzene	ug/m3	<230	<230	230	6029948
Chlorobenzene	ug/m3	<43	<43	43	6029948
Benzyl chloride	ug/m3	<240	<240	240	6029948
1,3-Dichlorobenzene	ug/m3	<220	<220	220	6029948
1,4-Dichlorobenzene	ug/m3	<56	<56	56	6029948
1,2-Dichlorobenzene	ug/m3	<56	<56	56	6029948
1,2,4-Trichlorobenzene	ug/m3	<340	<340	340	6029948
Hexachlorobutadiene	ug/m3	<490	<490	490	6029948
Hexane	ug/m3	<65	<65	65	6029948
Heptane	ug/m3	<110	<110	110	6029948
Cyclohexane	ug/m3	<64	<64	64	6029948
Tetrahydrofuran	ug/m3	<110	<110	110	6029948
1,4-Dioxane	ug/m3	<330	<330	330	6029948
Naphthalene	ug/m3	<97	<97	97	6029948
Total Xylenes	ug/m3	<120	<120	120	6029948
1,1,1,2-Tetrachloroethane	ug/m3	<64	<64	64	6029948
Vinyl Bromide	ug/m3	<81	<81	81	6029948
Propene	ug/m3	<80	<80	80	6029948
2,2,4-Trimethylpentane	ug/m3	49300	49100	86	6029948
Carbon Disulfide	ug/m3	<140	<140	140	6029948
Vinyl Acetate	ug/m3	<65	<65	65	6029948

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Clifton Associates Ltd.

Client Project #: CG2430.1E11 Site Location: SEARS CANADA

Sampler Initials: DB

VOLATILE ORGANIC HYDROCARBONS BY GC/MS (AIR)

Maxxam ID		JGE659	JGE659		
Sampling Date		2019/03/20	2019/03/20		
COC Number		40864	40864		
	UNITS	SV32CS/1521	SV32CS/1521 Lab-Dup	RDL	QC Batch
Volatile Organics					
F1-BTEX, C6-C10 (as Toluene)	ug/m3	47400	47700	460	6034792
F2, C10-C16 (as Decane)	ug/m3	<460	<460	460	6034792
Aliphatic >C5-C6	ug/m3	2670	2650	460	6034806
Aliphatic >C6-C8	ug/m3	128000	128000	460	6034806
Aliphatic >C8-C10	ug/m3	<460	<460	460	6034806
Aliphatic >C10-C12	ug/m3	<460	<460	460	6034806
Aliphatic >C12-C16	ug/m3	<460	<460	460	6034806
Aromatic >C7-C8 (TEX Excluded)	ug/m3	<460	<460	460	6034806
Aromatic >C8-C10	ug/m3	<460	<460	460	6034806
Aromatic >C10-C12	ug/m3	<460	<460	460	6034806
Aromatic >C12-C16	ug/m3	<460	<460	460	6034806
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Du					

Clifton Associates Ltd.
Client Project #: CG2430.1E11

Site Location: SEARS CANADA

Sampler Initials: DB

GENERAL COMMENTS

Sample JGE659 [SV32CS/1521] : Sample was analyzed at a 92.5X dilution. The DL's were adjusted accordingly.

Matrix Gas Analysis: Canister was pressurized with Helium to enable sampling. Results and DLs adjusted accordingly.

Matrix Gas Analysis: Results normalized to 100% dry volume.

Results relate only to the items tested.

Clifton Associates Ltd.

Client Project #: CG2430.1E11
Site Location: SEARS CANADA

Sampler Initials: DB

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6029925	NS2	Spiked Blank	Bromochloromethane	2019/03/21		97	%	60 - 140
			D5-Chlorobenzene	2019/03/21		99	%	60 - 140
			Difluorobenzene	2019/03/21		100	%	60 - 140
			Dichlorodifluoromethane (FREON 12)	2019/03/21		90	%	70 - 130
			1,2-Dichlorotetrafluoroethane	2019/03/21		81	%	70 - 130
			Chloromethane	2019/03/21		73	%	70 - 130
			Vinyl Chloride	2019/03/21		87	%	70 - 130
			Chloroethane	2019/03/21		89	%	70 - 130
			1,3-Butadiene	2019/03/21		93	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2019/03/21		98	%	70 - 130
			Ethanol (ethyl alcohol)	2019/03/21		84	%	70 - 130
			Trichlorotrifluoroethane	2019/03/21		93	%	70 - 130
			2-propanol	2019/03/21		75	%	70 - 130
			2-Propanone	2019/03/21		94	%	70 - 130
			Methyl Ethyl Ketone (2-Butanone)	2019/03/21		101	%	70 - 130
			Methyl Isobutyl Ketone	2019/03/21		98	%	70 - 130
			Methyl Butyl Ketone (2-Hexanone)	2019/03/21		100	%	70 - 130
			Methyl t-butyl ether (MTBE)	2019/03/21		96	%	70 - 130
			Ethyl Acetate	2019/03/21		96	%	70 - 130
			1,1-Dichloroethylene	2019/03/21		105	%	70 - 130
			cis-1,2-Dichloroethylene	2019/03/21		97	%	70 - 130
			trans-1,2-Dichloroethylene	2019/03/21		102	%	70 - 130
			Methylene Chloride(Dichloromethane)	2019/03/21		88	%	70 - 130
			Chloroform	2019/03/21		97	%	70 - 130
			Carbon Tetrachloride	2019/03/21		103	%	70 - 130
			1,1-Dichloroethane	2019/03/21		96	%	70 - 130
			1,2-Dichloroethane	2019/03/21		99	%	70 - 130
			Ethylene Dibromide	2019/03/21		104	%	70 - 130
			1,1,1-Trichloroethane	2019/03/21		93	%	70 - 130
			1,1,2-Trichloroethane	2019/03/21		101	%	70 - 130
			1,1,2,2-Tetrachloroethane	2019/03/21		102	%	70 - 130
			cis-1,3-Dichloropropene	2019/03/21		99	%	70 - 130
			trans-1,3-Dichloropropene	2019/03/21		106	%	70 - 130
			1,2-Dichloropropane	2019/03/21		101	%	70 - 130
			Bromomethane	2019/03/21		121	%	70 - 130
			Bromoform	2019/03/21		109	%	70 - 130
			Bromodichloromethane	2019/03/21		102	%	70 - 130
			Dibromochloromethane	2019/03/21		108	%	70 - 130
			Trichloroethylene	2019/03/21		99	%	70 - 130
			Tetrachloroethylene	2019/03/21		100	%	70 - 130
			Benzene	2019/03/21		100	%	70 - 130
			Toluene	2019/03/21		105	%	70 - 130
			Ethylbenzene	2019/03/21		102	%	70 - 130
			p+m-Xylene	2019/03/21		101	%	70 - 130
			o-Xylene	2019/03/21		103	%	70 - 130
			Styrene	2019/03/21		109	%	70 - 130
			4-ethyltoluene	2019/03/21		104	%	70 - 130
			1,3,5-Trimethylbenzene	2019/03/21		101	%	70 - 130
			1,2,4-Trimethylbenzene	2019/03/21		98	%	70 - 130
			Chlorobenzene	2019/03/21		108	%	70 - 130
			Benzyl chloride	2019/03/21		102	%	70 - 130
			1,3-Dichlorobenzene	2019/03/21		110	%	70 - 130
			1,4-Dichlorobenzene	2019/03/21		107	%	70 - 130

Clifton Associates Ltd.

Client Project #: CG2430.1E11
Site Location: SEARS CANADA

Sampler Initials: DB

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			1,2-Dichlorobenzene	2019/03/21		101	%	70 - 130
			1,2,4-Trichlorobenzene	2019/03/21		83	%	70 - 130
			Hexachlorobutadiene	2019/03/21		88	%	70 - 130
			Hexane	2019/03/21		91	%	70 - 130
			Heptane	2019/03/21		100	%	70 - 130
			Cyclohexane	2019/03/21		95	%	70 - 130
			Tetrahydrofuran	2019/03/21		98	%	70 - 130
			1,4-Dioxane	2019/03/21		97	%	70 - 130
			Naphthalene	2019/03/21		76	%	70 - 130
			Total Xylenes	2019/03/21		102	%	70 - 13
			1,1,1,2-Tetrachloroethane	2019/03/21		105	%	70 - 13
			Vinyl Bromide	2019/03/21		94	%	70 - 13
			Propene	2019/03/21		94	%	70 - 13
			2,2,4-Trimethylpentane	2019/03/21		99	%	70 - 13
			Carbon Disulfide	2019/03/21		103	%	70 - 13
			Vinyl Acetate	2019/03/21		72	%	70 - 13
029925	NS2	Method Blank	Bromochloromethane	2019/03/21		90	%	60 - 14
			D5-Chlorobenzene	2019/03/21		95	%	60 - 14
			Difluorobenzene	2019/03/21		99	%	60 - 14
			Dichlorodifluoromethane (FREON 12)	2019/03/21	<0.20		ppbv	
			1,2-Dichlorotetrafluoroethane	2019/03/21	<0.17		ppbv	
			Chloromethane	2019/03/21	<0.30		ppbv	
			Vinyl Chloride	2019/03/21	<0.10		ppbv	
			Chloroethane	2019/03/21	<0.30		ppbv	
			1,3-Butadiene	2019/03/21	<0.50		ppbv	
			Trichlorofluoromethane (FREON 11)	2019/03/21	<0.20		ppbv	
			Ethanol (ethyl alcohol)	2019/03/21	<1.0		ppbv	
			Trichlorotrifluoroethane	2019/03/21	<0.15		ppbv	
			2-propanol	2019/03/21	<1.0		ppbv	
			2-Propanone	2019/03/21	<0.60		ppbv	
			Methyl Ethyl Ketone (2-Butanone)	2019/03/21	<0.20		ppbv	
			Methyl Isobutyl Ketone	2019/03/21	<0.20		ppbv	
			Methyl Butyl Ketone (2-Hexanone)	2019/03/21	<1.0		ppbv	
			Methyl t-butyl ether (MTBE)	2019/03/21	<0.20		ppbv	
			Ethyl Acetate	2019/03/21	<1.0		ppbv	
			1,1-Dichloroethylene	2019/03/21	<0.10		ppbv	
			cis-1,2-Dichloroethylene	2019/03/21	<0.10		ppbv	
			trans-1,2-Dichloroethylene	2019/03/21	<0.10		ppbv	
			Methylene Chloride(Dichloromethane)	2019/03/21	<0.60		ppbv	
			Chloroform	2019/03/21	<0.10			
			Carbon Tetrachloride	2019/03/21	<0.10		ppbv	
			1,1-Dichloroethane	2019/03/21	<0.10		ppbv	
			1,2-Dichloroethane		<0.10		ppbv	
			•	2019/03/21			ppbv	
			Ethylene Dibromide	2019/03/21 2019/03/21	<0.10		ppbv	
			1,1,1-Trichloroethane		<0.10		ppbv	
			1,1,2-Trichloroethane	2019/03/21	<0.10		ppbv	
			1,1,2,2-Tetrachloroethane	2019/03/21	<0.10		ppbv	
			cis-1,3-Dichloropropene	2019/03/21	<0.10		ppbv	
			trans-1,3-Dichloropropene	2019/03/21	<0.10		ppbv	
			1,2-Dichloropropane	2019/03/21	<0.10		ppbv	
			Bromomethane	2019/03/21	<0.10		ppbv	
			Bromoform	2019/03/21	<0.20		ppbv	
			Bromodichloromethane	2019/03/21	<0.20		ppbv	

Clifton Associates Ltd.

Client Project #: CG2430.1E11
Site Location: SEARS CANADA

Sampler Initials: DB

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dibromochloromethane	2019/03/21	<0.20		ppbv	
			Trichloroethylene	2019/03/21	< 0.10		ppbv	
			Tetrachloroethylene	2019/03/21	< 0.10		ppbv	
			Benzene	2019/03/21	<0.10		ppbv	
			Toluene	2019/03/21	<0.10		ppbv	
			Ethylbenzene	2019/03/21	< 0.10		ppbv	
			p+m-Xylene	2019/03/21	<0.20		ppbv	
			o-Xylene	2019/03/21	<0.10		ppbv	
			Styrene	2019/03/21	< 0.10		ppbv	
			4-ethyltoluene	2019/03/21	< 0.50		ppbv	
			1,3,5-Trimethylbenzene	2019/03/21	< 0.50		ppbv	
			1,2,4-Trimethylbenzene	2019/03/21	< 0.50		ppbv	
			Chlorobenzene	2019/03/21	< 0.10		ppbv	
			Benzyl chloride	2019/03/21	< 0.50		ppbv	
			1,3-Dichlorobenzene	2019/03/21	< 0.40		ppbv	
			1,4-Dichlorobenzene	2019/03/21	<0.10		ppbv	
			1,2-Dichlorobenzene	2019/03/21	<0.10		ppbv	
			1,2,4-Trichlorobenzene	2019/03/21	<0.50		ppbv	
			Hexachlorobutadiene	2019/03/21	<0.50		ppbv	
			Hexane	2019/03/21	<0.20		ppbv	
			Heptane	2019/03/21	< 0.30		ppbv	
			Cyclohexane	2019/03/21	<0.20		ppbv	
			Tetrahydrofuran	2019/03/21	< 0.40		ppbv	
			1,4-Dioxane	2019/03/21	<1.0		ppbv	
			Naphthalene	2019/03/21	<0.20		ppbv	
			Total Xylenes	2019/03/21	<0.30		ppbv	
			1,1,1,2-Tetrachloroethane	2019/03/21	<0.10		ppbv	
			Vinyl Bromide	2019/03/21	<0.20		ppbv	
			Propene	2019/03/21	<0.50		ppbv	
			2,2,4-Trimethylpentane	2019/03/21	<0.20		ppbv	
			Carbon Disulfide	2019/03/21	<0.50		ppbv	
			Vinyl Acetate	2019/03/21	<0.20		ppbv	
029925	NS2	RPD [JGE659-01]	Dichlorodifluoromethane (FREON 12)	2019/03/21	NC		%	25
023323	1132	111 2 [302033 01]	1,2-Dichlorotetrafluoroethane	2019/03/21	NC		%	25
			Chloromethane	2019/03/21	NC		%	25
			Vinyl Chloride	2019/03/21	NC		%	25
			Chloroethane	2019/03/21	NC		%	25
			1,3-Butadiene	2019/03/21	NC		%	25
			Trichlorofluoromethane (FREON 11)	2019/03/21	NC		%	25
			Ethanol (ethyl alcohol)	2019/03/21	NC		%	25
			Trichlorotrifluoroethane	2019/03/21	NC		%	25
			2-propanol	2019/03/21	NC		%	25
			2-Propanone	2019/03/21	NC		%	25
			Methyl Ethyl Ketone (2-Butanone)	2019/03/21	NC		%	25
			Methyl Isobutyl Ketone	2019/03/21	NC		%	25
			Methyl Butyl Ketone (2-Hexanone)	2019/03/21	NC		% %	25 25
			Methyl t-butyl ether (MTBE)	2019/03/21	NC		% %	25 25
				2019/03/21				
			Ethyl Acetate		NC NC		%	25 25
			1,1-Dichloroethylene	2019/03/21	NC NC		%	25
			cis-1,2-Dichloroethylene	2019/03/21	NC		%	25
			trans-1,2-Dichloroethylene	2019/03/21	NC		%	25
			Methylene Chloride(Dichloromethane)	2019/03/21	NC		%	25
			Chloroform	2019/03/21	NC		%	25

Clifton Associates Ltd.

Client Project #: CG2430.1E11 Site Location: SEARS CANADA

Sampler Initials: DB

QA/QC Batch Init QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
	Carbon Tetrachloride	2019/03/21	NC	•	%	25
	1,1-Dichloroethane	2019/03/21	NC		%	25
	1,2-Dichloroethane	2019/03/21	NC		%	25
	Ethylene Dibromide	2019/03/21	NC		%	25
	1,1,1-Trichloroethane	2019/03/21	NC		%	25
	1,1,2-Trichloroethane	2019/03/21	NC		%	25
	1,1,2,2-Tetrachloroethane	2019/03/21	NC		%	25
	cis-1,3-Dichloropropene	2019/03/21	NC		%	25
	trans-1,3-Dichloropropene	2019/03/21	NC		%	25
	1,2-Dichloropropane	2019/03/21	NC		%	25
	Bromomethane	2019/03/21	NC		%	25
	Bromoform	2019/03/21	NC		%	25
	Bromodichloromethane	2019/03/21	NC		%	25
	Dibromochloromethane	2019/03/21	NC		%	25
	Trichloroethylene	2019/03/21	NC		%	25
	Tetrachloroethylene	2019/03/21	NC		%	25
	Benzene	2019/03/21	1.6		%	25
	Toluene	2019/03/21	0.28		%	25
	Ethylbenzene	2019/03/21	NC		%	25
	p+m-Xylene	2019/03/21	NC		%	25
	o-Xylene	2019/03/21	NC		%	25
	Styrene	2019/03/21	NC		%	25
	4-ethyltoluene	2019/03/21	NC		%	25
	1,3,5-Trimethylbenzene	2019/03/21	NC		%	25
	1,2,4-Trimethylbenzene	2019/03/21	NC		%	25
	Chlorobenzene	2019/03/21	NC		%	25
	Benzyl chloride	2019/03/21	NC		%	25
	1,3-Dichlorobenzene	2019/03/21	NC		%	25
	1,4-Dichlorobenzene	2019/03/21	NC		%	25
	1,2-Dichlorobenzene	2019/03/21	NC		%	25
	1,2,4-Trichlorobenzene	2019/03/21	NC		%	25
	Hexachlorobutadiene	2019/03/21	NC		%	25
	Hexane	2019/03/21	NC		%	25
	Heptane	2019/03/21	NC		%	25
	Cyclohexane	2019/03/21	NC		%	25
	Tetrahydrofuran	2019/03/21	NC		%	25
	1,4-Dioxane	2019/03/21	NC		%	25 25
	•	2019/03/21	NC		%	25 25
	Naphthalene Total Yulonos					
	Total Xylenes	2019/03/21	NC NC		%	25 25
	1,1,1,2-Tetrachloroethane	2019/03/21			%	25 25
	Vinyl Bromide Propene	2019/03/21	NC NC		%	25 25
	•	2019/03/21			%	
	2,2,4-Trimethylpentane	2019/03/21	0.32		%	25 25
	Carbon Disulfide	2019/03/21	NC		%	25 25
020049 ACC DDD [ICECEO 04]	Vinyl Acetate	2019/03/21	NC NC		%	25 25
029948 ASC RPD [JGE659-01]	Dichlorodifluoromethane (FREON 12)	2019/03/26	NC		%	25 25
	1,2-Dichlorotetrafluoroethane	2019/03/26	NC		%	25
	Chloromethane	2019/03/26	NC		%	25
	Vinyl Chloride	2019/03/26	NC		%	25
	Chloroethane	2019/03/26	NC		%	25
	1,3-Butadiene	2019/03/26	NC		%	25
	Trichlorofluoromethane (FREON 11)	2019/03/26	NC		%	25
	Ethanol (ethyl alcohol)	2019/03/26	NC		%	25

Clifton Associates Ltd.

Client Project #: CG2430.1E11 Site Location: SEARS CANADA

Sampler Initials: DB

QA/QC Batch Init QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
	Trichlorotrifluoroethane	2019/03/26	NC	<u></u>	%	25
	2-propanol	2019/03/26	NC		%	25
	2-Propanone	2019/03/26	NC		%	25
	Methyl Ethyl Ketone (2-Butanone)	2019/03/26	NC		%	25
	Methyl Isobutyl Ketone	2019/03/26	NC		%	25
	Methyl Butyl Ketone (2-Hexanone)	2019/03/26	NC		%	25
	Methyl t-butyl ether (MTBE)	2019/03/26	NC		%	25
	Ethyl Acetate	2019/03/26	NC		%	25
	1,1-Dichloroethylene	2019/03/26	NC		%	25
	cis-1,2-Dichloroethylene	2019/03/26	NC		%	25
	trans-1,2-Dichloroethylene	2019/03/26	NC		%	25
	Methylene Chloride(Dichloromethane)	2019/03/26	NC		%	25
	Chloroform	2019/03/26	NC		%	25
	Carbon Tetrachloride	2019/03/26	NC		%	25
	1,1-Dichloroethane	2019/03/26	NC		%	25
	1,2-Dichloroethane	2019/03/26	NC		%	25
	Ethylene Dibromide	2019/03/26	NC		%	25
	1,1,1-Trichloroethane	2019/03/26	NC		%	25
	1,1,2-Trichloroethane	2019/03/26	NC		%	25
	1,1,2,2-Tetrachloroethane	2019/03/26	NC		%	25
	cis-1,3-Dichloropropene	2019/03/26	NC		%	25
	trans-1,3-Dichloropropene	2019/03/26	NC		%	25
	1,2-Dichloropropane	2019/03/26	NC		%	25
	Bromomethane	2019/03/26	NC		%	25
	Bromoform	2019/03/26	NC		%	25
	Bromodichloromethane	2019/03/26	NC		%	25
	Dibromochloromethane	2019/03/26	NC		%	25
	Trichloroethylene	2019/03/26	NC		%	25
	Tetrachloroethylene	2019/03/26	NC		%	25
	Benzene ,	2019/03/26	1.6		%	25
	Toluene	2019/03/26	0.28		%	25
	Ethylbenzene	2019/03/26	NC		%	25
	p+m-Xylene	2019/03/26	NC		%	25
	o-Xylene	2019/03/26	NC		%	25
	Styrene	2019/03/26	NC		%	25
	4-ethyltoluene	2019/03/26	NC		%	25
	1,3,5-Trimethylbenzene	2019/03/26	NC		%	25
	1,2,4-Trimethylbenzene	2019/03/26	NC		%	25
	Chlorobenzene	2019/03/26	NC		%	25
	Benzyl chloride	2019/03/26	NC		%	25
	1,3-Dichlorobenzene	2019/03/26	NC		%	25
	1,4-Dichlorobenzene	2019/03/26	NC		%	25
	1,2-Dichlorobenzene	2019/03/26	NC		%	25
	1,2,4-Trichlorobenzene	2019/03/26	NC		%	25
	Hexachlorobutadiene	2019/03/26	NC		%	25
	Hexane	2019/03/26	NC		%	25
	Heptane	2019/03/26	NC		%	25
	Cyclohexane	2019/03/26	NC NC		%	25 25
	•	2019/03/26				
	Tetrahydrofuran		NC NC		%	25
	1,4-Dioxane	2019/03/26	NC NC		%	25
	Naphthalene	2019/03/26	NC		%	25
	Total Xylenes	2019/03/26	NC		%	25
	1,1,1,2-Tetrachloroethane	2019/03/26	NC		%	25

Maxxam Job #: B973248 Report Date: 2019/03/28

Clifton Associates Ltd.

Client Project #: CG2430.1E11
Site Location: SEARS CANADA

Sampler Initials: DB

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC	lucia.	OC Turns	Danamatan	Data Analus	Malua	Danes ve ···	LINUTC	OC Limite
Batch	Init	QC Type	Parameter Vinyl Bromide	Date Analyzed	Value NC	Recovery	UNITS %	QC Limits
			•	2019/03/26				
			Propene	2019/03/26	NC 0.33		%	25
			2,2,4-Trimethylpentane	2019/03/26	0.32		%	25
			Carbon Disulfide	2019/03/26	NC		%	25
			Vinyl Acetate	2019/03/26	NC		%	25
5034792	NS2	Method Blank	F1-BTEX, C6-C10 (as Toluene)	2019/03/21	<5.0		ug/m3	
			F2, C10-C16 (as Decane)	2019/03/21	<5.0		ug/m3	
5034792	NS2	RPD [JGE659-01]	F1-BTEX, C6-C10 (as Toluene)	2019/03/21	0.50		%	25
			F2, C10-C16 (as Decane)	2019/03/21	NC		%	25
5034806	NS2	Method Blank	Aliphatic >C5-C6	2019/03/21	<5.0		ug/m3	
			Aliphatic >C6-C8	2019/03/21	<5.0		ug/m3	
			Aliphatic >C8-C10	2019/03/21	<5.0		ug/m3	
			Aliphatic >C10-C12	2019/03/21	<5.0		ug/m3	
			Aliphatic >C12-C16	2019/03/21	<5.0		ug/m3	
			Aromatic >C7-C8 (TEX Excluded)	2019/03/21	<5.0		ug/m3	
			Aromatic >C8-C10	2019/03/21	<5.0		ug/m3	
			Aromatic >C10-C12	2019/03/21	<5.0		ug/m3	
			Aromatic >C12-C16	2019/03/21	<5.0		ug/m3	
5034806	NS2	RPD [JGE659-01]	Aliphatic >C5-C6	2019/03/21	0.91		%	25
			Aliphatic >C6-C8	2019/03/21	0.17		%	25
			Aliphatic >C8-C10	2019/03/21	NC		%	25
			Aliphatic >C10-C12	2019/03/21	NC		%	25
			Aliphatic >C12-C16	2019/03/21	NC		%	25
			Aromatic >C7-C8 (TEX Excluded)	2019/03/21	NC		%	25
			Aromatic >C8-C10	2019/03/21	NC		%	25
			Aromatic >C10-C12	2019/03/21	NC		%	25
			Aromatic >C12-C16	2019/03/21	NC		%	25
039478	CAT	Method Blank	Oxygen		<0.1		% v/v	
			Nitrogen		<0.1		% v/v	
			Methane		<0.1		% v/v	
			Carbon Dioxide		<0.1		% v/v	
039478	CAT	RPD [JGE659-01]	Oxygen	2019/03/27	0.21		%	20
		<u>.</u>	Nitrogen	2019/03/27	0.036		%	20
			Methane	2019/03/27	NC		%	20
			Carbon Dioxide	2019/03/27	0.41		%	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Maxxam Job #: B973248 Report Date: 2019/03/28 Clifton Associates Ltd.
Client Project #: CG2430.1E11

Site Location: SEARS CANADA

Sampler Initials: DB

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Mauren Smith	
Maureen Smith, Supervisor, Volatiles	
Middell	
Tom Mitchell, B.Sc, Supervisor, Compressed Gases	

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

21-Mar-19 08:27 Cristina (Maria) Bacchus	rm - S	umm	a TM (Canis	ter												4	086	4
B973248	llo Rd ntario, L5N 2L8			0-668-0639) 817-5700									CAM FO	D-013	02 /2		Page <u>/</u>)of	7
	a		Fax: (905	817-5777										ANALY	SIS RE	QUESTE	ED		
K4 AIR-001	1 C	REPORT IN	IFORMATIC	N					17/33		a	w					-		
Company Name: CUFTON DS FOCA				11.					AL		015	ction				kad	4	I	
Contact Name: PANIEL BYDAT	Project Man	ager: 40	then d	Alsaa	THE	(g)			DUSTRI		FULL LIST OF VOCs (reference TO15A)	Aromatic/Aliphatic Hydrocarbon Fractions	16)	pecify		100	2	Z Z	
Address: 2222 30 AVE NE	Address:				hes o	s of t		œ	ALVIN		(refer	rocar	(C6-C10) and F2 (C10-C16)	is esi		本五		QA	a
CAR GOTY, OB TIET	19				(inc	псће		IR AI	ERCI		SOC	Hyd:	F2 (0	ple3	X	00		120	r USED
CAR GATY, AB TIET E-mail: Daniel Budai (a) Cly Ph: 403 690 6940	Mail: SF	pheno	data	die	VACUUM	JIM (ii	UR	NDOC	OMM	GAS	P. V	phatic	and	SC's	13	X	7	EN E	NO
Ph: 403 690 6940	Ph:	(a) c	lifte	Rs. C9	VAC	ACUI	APO	NT/IN	NT/C	LAB	IST (ic/Ali	C10)	ρ,	3	1	Ť	30	TERS
Sampled by:					START	END VACUUM (inches of Hg)	SOIL VAPOUR	AMBIENT/INDOOR AIR	AMBIENT/COMMERCIAL/INDUSTRIAL	SUB-SLAB GAS	FULL	Aromati	F1 (C6-	Selected VOC's - please specify	Other	ZAI DA))	CAPOTA	CANISTERS NOT
Field Sample ID		Canister	Flow Regulator	Collection															
(N/3) (S		Serial #	Serial#	20 3 10	7264	25	Y		CHEST.		V	X	X		X	X		X	
3/3200		MZI	UNZ	19/1	1cy-	214	\wedge				_	_	/		\sim	/>			
								Jan 1						-					
		H																	
						18.99						-							
			-						DISCO.		7		-			-			I SVES
														-		-			
				re			51158		172										
TAT Requirement PROJEC	T INFORMATIO	ON		REPORTIN	G REO	IIIREM	FNTS			Note									
FOR DELIVERACE #100 **SECTOR DELIVERACE DELI	#: <u>CG 24</u> re: <u>SEARS</u> #: Quote #:		ADA		EDD Regula		ON 11 ON 4 BC C	19		1) ple soil v 2) ple	ease ind rapour o ease list	r ambie all cani	nt air	the cha	ain of cu	r sample		used	
* need approval from Maxxam Task Ord	ler/Line Item		1	A	/	~	1	0	1							2			
Client Signature:		Received by:	J. C.	- 15-	1_	Joi	den	D	inh	-									
Date/Time: 20/3/19 11:12	2	Date/Time:	2019	103/2	0	5'	1	.,		PLE	ASE R	ETURI	N ALL U	JNUSE	D EQU	IPMEN	г		
Unless otherwise agreed to in writing, work submitted on this C which are available for viewing at www.maxxam.ca/terms.	hain of Custody is	subject to Max.	xam's standar	Terms and Co	aptions	Signing	of this (Chain o	f Custo	dy docu	ument is a	cknowled 2	igment an	d accept	ance of o	ur terms			
COC-1003 (11/2017)			do	KHU	CHR	m	vno	000	0			2:2	ר						

Quantitation Report (QT Reviewed)

Vial: 11 Data File : C:\Data\20190321\S032111.D Operator: NS2 Acq On : 21 Mar 2019 18:35

Inst : Instrument #1 : JGE659 PDX25.7 50ML Sample

Multiplr: 1.00 Misc : -7.0inHg -> 6.0psig , 60mL -> 1.5psig

MS Integration Params: rteint3.p

Quant Time: Mar 22 15:33:32 2019 Results File: T015_190123.RES

Quant Method : C:\methods\T015_190123.M (RTE Integrator)

: TO15 calibration, INTstd lot#160-401162459-1 expiry 2019/04/13

Last Update : Thu Jan 24 09:46:35 2019

Response via : Initial Calibration

DataAcq Meth : T0157200.M

Daily CC File:C:\Data\20190321\S032102.D Acquired: 21 Mar 2019 9:55

Internal Standards	R.T.	QIon	Response	Conc Unit	s Rec	overy
1) BROMOCHLOROMETHANE 31) 1,4-DIFLUOROBENZENE 52) d5-CHLOROBENZENE	12.38 14.55 20.21	130 114 117	567966 1999729 1777518	26.3000 26.8000 26.8000	PPBV	96 96 93
System Monitoring Compounds						
Target Compounds			•		Qval	ue
7) Butane	4.91	43	43971	2.6996	ppbv	98
18) Dichloromethane	9.06	49	3740	0.2237	ppbv #	84
33) Cyclohexane	13.11	56	4639m	0.1950	~ -	56
35) Benzene	13.75	78	62595	1.1239		99
36) 2,2,4-Trimethylpentane	13.93	57	8050414	114.0918		99 99
47) Toluene	17.69	91	209934	2.9546	pppv	99

Quantitation Report (QT Renciew24)1.D\data.ms Abundance Data | File : C:\Data\20190321\S032111.D Vial: 11 Operator: NS2 : 21 Mar 2019 18:35 Acq On : Instrument #1 Inst PDX25.7 50ML : JGE659 Multiplr: 1.00 : -7.0inHg -> 6.0psig , 60mL -> 1.5psig MS Integration Params: rteint3.p 4200000 | Time: Mar 22 15:33:32 2019 Results File: T015_190123.RES Method: C:\methods\T015_190123.M (RTE Integrator) : TO15 calibration, INTstd lot#160-401162459-1 expiry 2019/04/13 Last Update : Thu Jan 24 09:46:35 2019 Dasponse via : Initial Calibration patarcq Meth : T0157200.M 3600000 3400000 3200000 3000000 2800000 2600000 2400000 2200000 2000000 1,4-DIFLUOROBENZENE, 1800000 1600000 **BROMOCHLOROMETHANE,I** 1400000 1200000 1000000 800000 600000 Cyclohexane, T Benzene,T 400000 200000 26.00 28.00 30.00 24.00 16.00 18.00 20.00 14.00 10.00 12.00 6.00 8.00 4.00

Quantitation Report (QT Reviewed)

Data File : C:\Data\20190321\S032112.D Vial: 12
Acq On : 21 Mar 2019 19:20 Operator: NS2

Sample : JGE659:D1 PDX25.7 50ML Inst : Instrument #1

Misc : -7.0inHg -> 6.0psig , 60mL -> 1.5psig Multiplr: 1.00

MS Integration Params: rteint3.p

Quant Time: Mar 22 15:35:09 2019 Results File: T015_190123.RES

Quant Method : C:\methods\T015_190123.M (RTE Integrator)

Title : T015 calibration, INTstd lot#160-401162459-1 expiry 2019/04/13

Last Update : Thu Jan 24 09:46:35 2019

Response via : Initial Calibration

DataAcq Meth: T0157200.M

Daily CC File:C:\Data\20190321\S032102.D Acquired: 21 Mar 2019 9:55

Internal Standards	R.T.	QIon	Response	Conc Unit	s Re	ecovery
1) BROMOCHLOROMETHANE 31) 1,4-DIFLUOROBENZENE 52) d5-CHLOROBENZENE	12.38 14.55 20.21	130 114 117	563652 1992528 1745166	26.3000 26.8000 26.8000	PPBV	96 96 91
System Monitoring Compounds						
Target Compounds					Qva	alue
7) Butane	4.90	43	45239	2.7987		95
18) Dichloromethane	9.06	49	3794	0.2286		
33) Cyclohexane	13.11	56	4057m	0.1712		58
35) Benzene	13.75	78	61410	1.1066		100
36) 2,2,4-Trimethylpentane	13.93	57	7995764	113.7268		99
47) Toluene	17.69	91	209754	2.9627	vaqq	100

(QT Re101 8032412.D\data.ms Quantitation Report Abundance Data | File : C:\Data\20190321\S032112.D Vial: 12 Acq on 44000000 Sample : 21 Mar 2019 19:20 Operator: NS2 : Instrument #1 : JGE659:D1 PDX25.7 50ML Inst Multiplr: 1.00 : -7.0inHg -> 6.0psig , 60mL -> 1.5psig Misc MS Integration Params: rteint3.p Results File: T015_190123.RES Quant Time: Mar 22 15:35:09 2019 4000000 | Method : C:\methods\T015_190123.M (RTE Integrator) : T015 calibration, INTstd lot#160- $\bar{4}$ 01162459-1 expiry 2019/04/13 Last Update : Thu Jan 24 09:46:35 2019 Response via : Initial Calibration DataAcq Meth: T0157200.M 3600000 3400000 3200000 3000000 2800000 2600000 2400000 2200000 2000000 1,4-DIFLUOROBENZENE, 1800000 1600000 1400000 BROMOCHLOROMETHANE,I 1200000 1000000 800000 600000 Cyclohexane,T 400000 Benzene,T 200000 28.00 30,00 20.00 22.00 24.00 26.00 10.00 14.00 16.00 18.00 12,00 4.00 6.00 8.00

Your Project #: CG2430.1E11 Your C.O.C. #: 40865

Attention: Daniel Budai

Clifton Associates Ltd. 2222 30 Ave. NE Calgary, AB CANADA T2E 7K9

Report Date: 2019/05/27

Report #: R5727235 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B9D2395 Received: 2019/05/17, 08:37

Sample Matrix: Air # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
BTEX and CCME Compounds in Air(TO-15mod)	3	N/A	2019/05/17	BRL SOP-00304	EPA TO-15 m
BTEX Fractionation in Air (TO-15mod)	3	N/A	2019/05/17	BRL SOP-00304	EPA TO-15 m
Canister Pressure (TO-15)	3	N/A	2019/05/17	BRL SOP-00304	EPA TO-15 m
Matrix Gases (1)	2	N/A	2019/05/24	CAM SOP-00225	GC/TCD
Volatile Organics in Air (TO-15) (2)	3	N/A	2019/05/17	BRL SOP-00304	EPA TO-15 m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- (1) Argon interferes with Oxygen and is included in the reported Oxygen concentration. The atmosphere contains about 0.9% Argon.
- (2) Air sampling canisters have been cleaned in accordance with U.S. EPA Method TO15. At the end of the cleaning, evacuation, and pressurization cycles, one canister was selected and was pressurized with Zero Air. This canister was then analyzed via TO15 on a GC/MS. The canister must have been found to contain <0.2 ppbv concentration of all target analytes in order for the batch to have been considered clean. Each canister also underwent a leak check prior to shipment.

Please Note: SUMMA® canister samples will be retained by Maxxam for a period of 5 calendar days or as contractually agreed from the date of this report, after which time they will be cleaned for reuse. If you require a longer sample storage period, please contact your service representative.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Cristina (Maria) Bacchus, Project Manager

Email: CBacchus@maxxam.ca Phone# (905)817-5763

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Clifton Associates Ltd. Client Project #: CG2430.1E11

Sampler Initials: DB

RESULTS OF ANALYSES OF AIR

Maxxam ID		JSZ220	JSZ221	JSZ222	
Sampling Date		2019/05/16	2019/05/16	2019/05/16	
COC Number		40865	40865	40865	
	UNITS	32	321	322	QC Batch
Volatile Organics					
Pressure on Receipt	psig	(-2.3)	(-2.6)	(-1.4)	6130785
QC Batch = Quality Control B	atch				

Clifton Associates Ltd. Client Project #: CG2430.1E11

Sampler Initials: DB

COMPRESSED GAS PARAMETERS (AIR)

	JSZ220	JSZ220	JSZ222		
	2019/05/16	2019/05/16	2019/05/16		
	40865	40865	40865		
UNITS	32	32 Lab-Dup	322	RDL	QC Batch
% v/v	20.2	20.2	22.2	0.2	6142302
% v/v	77.9	77.8	76.7	0.2	6142302
% v/v	<0.2	<0.2	<0.2	0.2	6142302
% v/v	2.0	2.1	1.1	0.2	6142302
	% v/v % v/v % v/v	2019/05/16 40865 UNITS 32 % v/v 20.2 % v/v 77.9 % v/v <0.2	2019/05/16 2019/05/16 40865 40865 40865 32 Lab-Dup	2019/05/16 2019/05/16 2019/05/16 40865	2019/05/16 2019/05/16 2019/05/16 40865

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Clifton Associates Ltd. Client Project #: CG2430.1E11

Sampler Initials: DB

VOLATILE ORGANIC HYDROCARBONS BY GC/MS (AIR)

Maxxam ID		JSZ220		JSZ221		JSZ222		
Sampling Date		2019/05/16		2019/05/16		2019/05/16		
COC Number		40865		40865		40865		
	UNITS	32	RDL	321	RDL	322	RDL	QC Batch
Volatile Organics								
F1-BTEX, C6-C10 (as Toluene)	ug/m3	975	5.0	265	10	76.0	5.0	6130814
F2, C10-C16 (as Decane)	ug/m3	16.0	5.0	2800	10	644	5.0	6130814
Aliphatic >C5-C6	ug/m3	854	5.0	<10	10	<5.0	5.0	6130808
Aliphatic >C6-C8	ug/m3	1390	5.0	<10	10	<5.0	5.0	6130808
Aliphatic >C8-C10	ug/m3	22.6	5.0	46	10	11.3	5.0	6130808
Aliphatic >C10-C12	ug/m3	7.1	5.0	1840	10	250	5.0	6130808
Aliphatic >C12-C16	ug/m3	<5.0	5.0	265	10	73.2	5.0	6130808
Aromatic >C7-C8 (TEX Excluded)	ug/m3	<5.0	5.0	<10	10	<5.0	5.0	6130808
Aromatic >C8-C10	ug/m3	<5.0	5.0	18	10	13.6	5.0	6130808
Aromatic >C10-C12	ug/m3	<5.0	5.0	37	10	27.8	5.0	6130808
Aromatic >C12-C16	ug/m3	<5.0	5.0	<10	10	<5.0	5.0	6130808
RDL = Reportable Detection Limit				•			•	•

QC Batch = Quality Control Batch

Clifton Associates Ltd. Client Project #: CG2430.1E11

Sampler Initials: DB

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		JSZ220				JSZ221				
Sampling Date		2019/05/16				2019/05/16				
COC Number		40865				40865				
	UNITS	32	RDL	ug/m3	DL (ug/m3)	321	RDL	ug/m3	DL (ug/m3)	QC Batch
Volatile Organics				I .		<u> </u>		I .		
Dichlorodifluoromethane (FREON 12)	ppbv	0.43	0.20	2.13	0.989	0.52	0.40	2.55	1.98	6127616
1,2-Dichlorotetrafluoroethane	ppbv	<0.17	0.17	<1.19	1.19	<0.34	0.34	<2.38	2.38	6127616
Chloromethane	ppbv	<0.30	0.30	<0.620	0.620	<0.60	0.60	<1.24	1.24	6127616
Vinyl Chloride	ppbv	<0.10	0.10	<0.256	0.256	<0.20	0.20	<0.511	0.511	6127616
Chloroethane	ppbv	<0.30	0.30	<0.792	0.792	<0.60	0.60	<1.58	1.58	6127616
1,3-Butadiene	ppbv	<0.50	0.50	<1.11	1.11	<1.0	1.0	<2.21	2.21	6127616
Trichlorofluoromethane (FREON 11)	ppbv	0.27	0.20	1.53	1.12	<0.40	0.40	<2.25	2.25	6127616
Ethanol (ethyl alcohol)	ppbv	1.6	1.0	3.02	1.88	10.8	2.0	20.3	3.77	6127616
Trichlorotrifluoroethane	ppbv	<0.15	0.15	<1.15	1.15	<0.30	0.30	<2.30	2.30	6127616
2-propanol	ppbv	<1.0	1.0	<2.46	2.46	<2.0	2.0	<4.92	4.92	6127616
2-Propanone	ppbv	2.04	0.60	4.84	1.43	2.2	1.2	5.33	2.85	6127616
Methyl Ethyl Ketone (2-Butanone)	ppbv	<0.20	0.20	<0.590	0.590	<0.40	0.40	<1.18	1.18	6127616
Methyl Isobutyl Ketone	ppbv	<0.20	0.20	<0.819	0.819	<0.40	0.40	<1.64	1.64	6127616
Methyl Butyl Ketone (2-Hexanone)	ppbv	<1.0	1.0	<4.10	4.10	<2.0	2.0	<8.19	8.19	6127616
Methyl t-butyl ether (MTBE)	ppbv	<0.20	0.20	<0.721	0.721	<0.40	0.40	<1.44	1.44	6127616
Ethyl Acetate	ppbv	<1.0	1.0	<3.60	3.60	<2.0	2.0	<7.21	7.21	6127616
1,1-Dichloroethylene	ppbv	<0.10	0.10	<0.396	0.396	<0.20	0.20	<0.793	0.793	6127616
cis-1,2-Dichloroethylene	ppbv	<0.10	0.10	<0.396	0.396	<0.20	0.20	<0.793	0.793	6127616
trans-1,2-Dichloroethylene	ppbv	<0.10	0.10	<0.396	0.396	<0.20	0.20	<0.793	0.793	6127616
Methylene Chloride(Dichloromethane)	ppbv	0.90	0.60	3.12	2.08	<1.2	1.2	<4.17	4.17	6127616
Chloroform	ppbv	3.39	0.10	16.5	0.488	0.45	0.20	2.18	0.977	6127616
Carbon Tetrachloride	ppbv	<0.10	0.10	<0.629	0.629	<0.20	0.20	<1.26	1.26	6127616
1,1-Dichloroethane	ppbv	<0.10	0.10	<0.405	0.405	<0.20	0.20	<0.809	0.809	6127616
1,2-Dichloroethane	ppbv	0.12	0.10	0.482	0.405	<0.20	0.20	<0.810	0.810	6127616
Ethylene Dibromide	ppbv	<0.10	0.10	<0.768	0.768	<0.20	0.20	<1.54	1.54	6127616
1,1,1-Trichloroethane	ppbv	<0.10	0.10	<0.546	0.546	<0.20	0.20	<1.09	1.09	6127616
1,1,2-Trichloroethane	ppbv	<0.10	0.10	<0.546	0.546	<0.20	0.20	<1.09	1.09	6127616
1,1,2,2-Tetrachloroethane	ppbv	<0.10	0.10	<0.687	0.687	<0.20	0.20	<1.37	1.37	6127616
cis-1,3-Dichloropropene	ppbv	<0.10	0.10	<0.454	0.454	<0.20	0.20	<0.908	0.908	6127616
trans-1,3-Dichloropropene	ppbv	<0.10	0.10	<0.454	0.454	<0.20	0.20	<0.908	0.908	6127616
1,2-Dichloropropane	ppbv	<0.10	0.10	<0.462	0.462	<0.20	0.20	<0.924	0.924	6127616
Bromomethane	ppbv	<0.10	0.10	<0.388	0.388	<0.20	0.20	<0.777	0.777	6127616
Bromoform	ppbv	<0.20	0.20	<2.07	2.07	<0.40	0.40	<4.13	4.13	6127616
Bromodichloromethane	ppbv	<0.20	0.20	<1.34	1.34	<0.40	0.40	<2.68	2.68	6127616
Dibromochloromethane	ppbv	<0.20	0.20	<1.70	1.70	<0.40	0.40	<3.41	3.41	6127616
Trichloroethylene	ppbv	<0.10	0.10	<0.537	0.537	10.0	0.20	53.8	1.07	6127616
RDL = Reportable Detection Limit										
OC Batch - Quality Control Batch										

QC Batch = Quality Control Batch

Clifton Associates Ltd.
Client Project #: CG2430.1E11

Sampler Initials: DB

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		JSZ220				JSZ221				
Sampling Date		2019/05/16				2019/05/16				
COC Number		40865				40865				
	UNITS	32	RDL	ug/m3	DL (ug/m3)	321	RDL	ug/m3	DL (ug/m3)	QC Batch
Tetrachloroethylene	ppbv	0.21	0.10	1.41	0.678	<0.20	0.20	<1.36	1.36	6127616
Benzene	ppbv	3.18	0.10	10.1	0.319	<0.20	0.20	<0.638	0.638	6127616
Toluene	ppbv	59.7	0.10	225	0.377	0.95	0.20	3.59	0.754	6127616
Ethylbenzene	ppbv	<0.10	0.10	<0.434	0.434	0.43	0.20	1.85	0.868	6127616
p+m-Xylene	ppbv	<0.20	0.20	<0.868	0.868	1.85	0.40	8.03	1.74	6127616
o-Xylene	ppbv	0.45	0.10	1.94	0.434	0.62	0.20	2.71	0.868	6127616
Styrene	ppbv	<0.10	0.10	<0.426	0.426	<0.20	0.20	<0.852	0.852	6127616
4-ethyltoluene	ppbv	<0.50	0.50	<2.46	2.46	<1.0	1.0	<4.92	4.92	6127616
1,3,5-Trimethylbenzene	ppbv	<0.50	0.50	<2.45	2.45	<1.0	1.0	<4.91	4.91	6127616
1,2,4-Trimethylbenzene	ppbv	<0.50	0.50	<2.45	2.45	1.6	1.0	7.62	4.91	6127616
Chlorobenzene	ppbv	<0.10	0.10	<0.460	0.460	<0.20	0.20	<0.921	0.921	6127616
Benzyl chloride	ppbv	<0.50	0.50	<2.59	2.59	<1.0	1.0	<5.18	5.18	6127616
1,3-Dichlorobenzene	ppbv	<0.40	0.40	<2.40	2.40	<0.80	0.80	<4.81	4.81	6127616
1,4-Dichlorobenzene	ppbv	<0.10	0.10	< 0.601	0.601	<0.20	0.20	<1.20	1.20	6127616
1,2-Dichlorobenzene	ppbv	<0.10	0.10	<0.601	0.601	<0.20	0.20	<1.20	1.20	6127616
1,2,4-Trichlorobenzene	ppbv	<0.50	0.50	<3.71	3.71	<1.0	1.0	<7.42	7.42	6127616
Hexachlorobutadiene	ppbv	<0.50	0.50	<5.33	5.33	<1.0	1.0	<10.7	10.7	6127616
Hexane	ppbv	0.25	0.20	0.881	0.705	<0.40	0.40	<1.41	1.41	6127616
Heptane	ppbv	<0.30	0.30	<1.23	1.23	<0.60	0.60	<2.46	2.46	6127616
Cyclohexane	ppbv	8.47	0.20	29.1	0.688	<0.40	0.40	<1.38	1.38	6127616
Tetrahydrofuran	ppbv	<0.40	0.40	<1.18	1.18	<0.80	0.80	<2.36	2.36	6127616
1,4-Dioxane	ppbv	<1.0	1.0	<3.60	3.60	<2.0	2.0	<7.21	7.21	6127616
Naphthalene	ppbv	<0.20	0.20	<1.05	1.05	<0.40	0.40	<2.10	2.10	6127616
Total Xylenes	ppbv	0.45	0.30	1.94	1.30	2.47	0.60	10.7	2.61	6127616
1,1,1,2-Tetrachloroethane	ppbv	<0.10	0.10	<0.687	0.687	<0.20	0.20	<1.37	1.37	6127616
Vinyl Bromide	ppbv	<0.20	0.20	<0.875	0.875	<0.40	0.40	<1.75	1.75	6127616
Propene	ppbv	1.49	0.50	2.56	0.861	<1.0	1.0	<1.72	1.72	6127616
2,2,4-Trimethylpentane	ppbv	105	0.20	492	0.934	<0.40	0.40	<1.87	1.87	6127616
Carbon Disulfide	ppbv	<0.50	0.50	<1.56	1.56	1.0	1.0	3.12	3.11	6127616
Vinyl Acetate	ppbv	<0.20	0.20	<0.704	0.704	<0.40	0.40	<1.41	1.41	6127616
Surrogate Recovery (%)					•	•			•	
Bromochloromethane	%	91		N/A	N/A	88		N/A	N/A	6127616
D5-Chlorobenzene	%	91		N/A	N/A	87		N/A	N/A	6127616
Difluorobenzene	%	91		N/A	N/A	88		N/A	N/A	6127616

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Clifton Associates Ltd.
Client Project #: CG2430.1E11

Sampler Initials: DB

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		JSZ222				
Sampling Date		2019/05/16				
COC Number		40865				
	UNITS	322	RDL	ug/m3	DL (ug/m3)	QC Batch
Volatile Organics		•	•			
Dichlorodifluoromethane (FREON 12)	ppbv	0.48	0.20	2.37	0.989	6127616
1,2-Dichlorotetrafluoroethane	ppbv	<0.17	0.17	<1.19	1.19	6127616
Chloromethane	ppbv	<0.30	0.30	<0.620	0.620	6127616
Vinyl Chloride	ppbv	<0.10	0.10	<0.256	0.256	6127616
Chloroethane	ppbv	<0.30	0.30	<0.792	0.792	6127616
1,3-Butadiene	ppbv	<0.50	0.50	<1.11	1.11	6127616
Trichlorofluoromethane (FREON 11)	ppbv	0.27	0.20	1.50	1.12	6127616
Ethanol (ethyl alcohol)	ppbv	4.2	1.0	7.87	1.88	6127616
Trichlorotrifluoroethane	ppbv	<0.15	0.15	<1.15	1.15	6127616
2-propanol	ppbv	<1.0	1.0	<2.46	2.46	6127616
2-Propanone	ppbv	1.61	0.60	3.83	1.43	6127616
Methyl Ethyl Ketone (2-Butanone)	ppbv	<0.20	0.20	<0.590	0.590	6127616
Methyl Isobutyl Ketone	ppbv	<0.20	0.20	<0.819	0.819	6127616
Methyl Butyl Ketone (2-Hexanone)	ppbv	<1.0	1.0	<4.10	4.10	6127616
Methyl t-butyl ether (MTBE)	ppbv	<0.20	0.20	<0.721	0.721	6127616
Ethyl Acetate	ppbv	<1.0	1.0	<3.60	3.60	6127616
1,1-Dichloroethylene	ppbv	<0.10	0.10	<0.396	0.396	6127616
cis-1,2-Dichloroethylene	ppbv	<0.10	0.10	<0.396	0.396	6127616
trans-1,2-Dichloroethylene	ppbv	<0.10	0.10	<0.396	0.396	6127616
Methylene Chloride(Dichloromethane)	ppbv	<0.60	0.60	<2.08	2.08	6127616
Chloroform	ppbv	0.87	0.10	4.27	0.488	6127616
Carbon Tetrachloride	ppbv	<0.10	0.10	<0.629	0.629	6127616
1,1-Dichloroethane	ppbv	<0.10	0.10	<0.405	0.405	6127616
1,2-Dichloroethane	ppbv	<0.10	0.10	< 0.405	0.405	6127616
Ethylene Dibromide	ppbv	<0.10	0.10	<0.768	0.768	6127616
1,1,1-Trichloroethane	ppbv	<0.10	0.10	<0.546	0.546	6127616
1,1,2-Trichloroethane	ppbv	<0.10	0.10	<0.546	0.546	6127616
1,1,2,2-Tetrachloroethane	ppbv	<0.10	0.10	<0.687	0.687	6127616
cis-1,3-Dichloropropene	ppbv	<0.10	0.10	< 0.454	0.454	6127616
trans-1,3-Dichloropropene	ppbv	<0.10	0.10	< 0.454	0.454	6127616
1,2-Dichloropropane	ppbv	<0.10	0.10	<0.462	0.462	6127616
Bromomethane	ppbv	<0.10	0.10	<0.388	0.388	6127616
Bromoform	ppbv	<0.20	0.20	<2.07	2.07	6127616
Bromodichloromethane	ppbv	<0.20	0.20	<1.34	1.34	6127616
Dibromochloromethane	ppbv	<0.20	0.20	<1.70	1.70	6127616
Trichloroethylene	ppbv	6.71	0.10	36.0	0.537	6127616
RDL = Reportable Detection Limit					<u> </u>	
QC Batch = Quality Control Batch						

Clifton Associates Ltd. Client Project #: CG2430.1E11

Sampler Initials: DB

VOLATILE ORGANICS BY GC/MS (AIR)

Maxxam ID		JSZ222				
Sampling Date		2019/05/16				
COC Number		40865				
	UNITS	322	RDL	ug/m3	DL (ug/m3)	QC Batch
Tetrachloroethylene	ppbv	<0.10	0.10	<0.678	0.678	6127616
Benzene	ppbv	<0.10	0.10	<0.319	0.319	6127616
Toluene	ppbv	0.55	0.10	2.06	0.377	6127616
Ethylbenzene	ppbv	0.29	0.10	1.25	0.434	6127616
p+m-Xylene	ppbv	1.31	0.20	5.69	0.868	6127616
o-Xylene	ppbv	0.54	0.10	2.34	0.434	6127616
Styrene	ppbv	<0.10	0.10	<0.426	0.426	6127616
4-ethyltoluene	ppbv	<0.50	0.50	<2.46	2.46	6127616
1,3,5-Trimethylbenzene	ppbv	<0.50	0.50	<2.45	2.45	6127616
1,2,4-Trimethylbenzene	ppbv	1.58	0.50	7.74	2.45	6127616
Chlorobenzene	ppbv	<0.10	0.10	<0.460	0.460	6127616
Benzyl chloride	ppbv	<0.50	0.50	<2.59	2.59	6127616
1,3-Dichlorobenzene	ppbv	<0.40	0.40	<2.40	2.40	6127616
1,4-Dichlorobenzene	ppbv	<0.10	0.10	<0.601	0.601	6127616
1,2-Dichlorobenzene	ppbv	<0.10	0.10	<0.601	0.601	6127616
1,2,4-Trichlorobenzene	ppbv	<0.50	0.50	<3.71	3.71	6127616
Hexachlorobutadiene	ppbv	<0.50	0.50	<5.33	5.33	6127616
Hexane	ppbv	<0.20	0.20	<0.705	0.705	6127616
Heptane	ppbv	<0.30	0.30	<1.23	1.23	6127616
Cyclohexane	ppbv	<0.20	0.20	<0.688	0.688	6127616
Tetrahydrofuran	ppbv	<0.40	0.40	<1.18	1.18	6127616
1,4-Dioxane	ppbv	<1.0	1.0	<3.60	3.60	6127616
Naphthalene	ppbv	<0.20	0.20	<1.05	1.05	6127616
Total Xylenes	ppbv	1.85	0.30	8.02	1.30	6127616
1,1,1,2-Tetrachloroethane	ppbv	<0.10	0.10	<0.687	0.687	6127616
Vinyl Bromide	ppbv	<0.20	0.20	<0.875	0.875	6127616
Propene	ppbv	<0.50	0.50	<0.861	0.861	6127616
2,2,4-Trimethylpentane	ppbv	<0.20	0.20	<0.934	0.934	6127616
Carbon Disulfide	ppbv	0.74	0.50	2.32	1.56	6127616
Vinyl Acetate	ppbv	<0.20	0.20	<0.704	0.704	6127616
Surrogate Recovery (%)			•			
Bromochloromethane	%	90		N/A	N/A	6127616
D5-Chlorobenzene	%	90		N/A	N/A	6127616
Difluorobenzene	%	90		N/A	N/A	6127616
RDL = Reportable Detection Limit	•		•			•

QC Batch = Quality Control Batch

N/A = Not Applicable

Clifton Associates Ltd. Client Project #: CG2430.1E11

Sampler Initials: DB

GENERAL COMMENTS

Matrix Gas Analysis: Canisters were pressurized with Helium to enable sampling. Results and DLs adjusted accordingly. Results normalized to 100% dry volume.

Sample JSZ220 [32]: Propene is a mixture of both propene and propane and this represents the highest possible concentration of propene.

Sample JSZ221 [321] : Sample was analyzed at a 2X dilution. The DL's were adjusted accordingly.

Results relate only to the items tested.

Client Project #: CG2430.1E11

Sampler Initials: DB

QUALITY ASSURANCE REPORT

QA/QC Batch	Init	OC Typo	Parameter	Data Analyzad	Value	Recovery	UNITS	QC Limits
6127616	LSY	QC Type Spiked Blank	Bromochloromethane	Date Analyzed 2019/05/17	value	104	%	60 - 140
0127010	LJI	Эрікей Бійтік	D5-Chlorobenzene	2019/05/17		105	%	60 - 140
			Difluorobenzene	2019/05/17		104	%	60 - 140
			Dichlorodifluoromethane (FREON 12)	2019/05/17		93	%	70 - 130
			1,2-Dichlorotetrafluoroethane	2019/05/17		87	%	70 - 130
			Chloromethane	2019/05/17		87	%	70 - 130
			Vinyl Chloride	2019/05/17		84	%	70 - 130
			Chloroethane	2019/05/17		86	%	70 - 130
			1,3-Butadiene	2019/05/17		87	%	70 - 130
			Trichlorofluoromethane (FREON 11)	2019/05/17		108	%	70 - 130
			Ethanol (ethyl alcohol)	2019/05/17		84	%	70 - 130
			Trichlorotrifluoroethane	2019/05/17		95	%	70 - 130
			2-propanol	2019/05/17		86	%	70 - 130
			2-Propanone	2019/05/17		99	%	70 - 130
			Methyl Ethyl Ketone (2-Butanone)	2019/05/17		96	%	70 - 130
			Methyl Isobutyl Ketone	2019/05/17		90	%	70 - 130
			Methyl Butyl Ketone (2-Hexanone)	2019/05/17		91	%	70 - 130
			Methyl t-butyl ether (MTBE)	2019/05/17		91	%	70 - 130
			Ethyl Acetate	2019/05/17		91	%	70 - 130
			1,1-Dichloroethylene	2019/05/17		98	%	70 - 130
			cis-1,2-Dichloroethylene	2019/05/17		93	%	70 - 130
			trans-1,2-Dichloroethylene	2019/05/17		97	%	70 - 130
			Methylene Chloride(Dichloromethane)	2019/05/17		83	%	70 - 130
			Chloroform	2019/05/17		99	%	70 - 130
			Carbon Tetrachloride	2019/05/17		91	%	70 - 130
			1,1-Dichloroethane	2019/05/17		93	%	70 - 130
			1,2-Dichloroethane	2019/05/17		98	%	70 - 130
			Ethylene Dibromide	2019/05/17		101	%	70 - 130
			1,1,1-Trichloroethane	2019/05/17		89	%	70 - 130
			1,1,2-Trichloroethane	2019/05/17		100	%	70 - 130
			1,1,2,2-Tetrachloroethane	2019/05/17		99	%	70 - 130
			cis-1,3-Dichloropropene	2019/05/17		93	%	70 - 130
			trans-1,3-Dichloropropene	2019/05/17		95	%	70 - 130
			1,2-Dichloropropane	2019/05/17		96	%	70 - 130
			Bromomethane	2019/05/17		92	%	70 - 130
			Bromoform	2019/05/17		101	%	70 - 130
			Bromodichloromethane	2019/05/17		106	%	70 - 130
			Dibromochloromethane	2019/05/17		107	%	70 - 130
			Trichloroethylene	2019/05/17		92	%	70 - 130
			Tetrachloroethylene	2019/05/17		94	%	70 - 130
			Benzene	2019/05/17		99	%	70 - 130
			Toluene	2019/05/17		102	%	70 - 130
			Ethylbenzene	2019/05/17		98	%	70 - 130
			p+m-Xylene	2019/05/17		94	%	70 - 130
			o-Xylene	2019/05/17		96	%	70 - 130
			Styrene	2019/05/17		92	%	70 - 130
			4-ethyltoluene	2019/05/17		96	%	70 - 130
			1,3,5-Trimethylbenzene	2019/05/17		93	%	70 - 130
			1,2,4-Trimethylbenzene	2019/05/17		88	%	70 - 130
			Chlorobenzene	2019/05/17		99	%	70 - 130
			Benzyl chloride	2019/05/17		89	%	70 - 130
			1,3-Dichlorobenzene	2019/05/17		97	%	70 - 130
			1,4-Dichlorobenzene	2019/05/17		94	%	70 - 130
			1,2-Dichlorobenzene	2019/05/17		94	%	70 - 130

Clifton Associates Ltd. Client Project #: CG2430.1E11

Sampler Initials: DB

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
		-4- · 11	1,2,4-Trichlorobenzene	2019/05/17	1 2.00	92	%	70 - 130
			Hexachlorobutadiene	2019/05/17		95	%	70 - 130
			Hexane	2019/05/17		88	%	70 - 130
			Heptane	2019/05/17		89	%	70 - 130
			Cyclohexane	2019/05/17		89	%	70 - 130
			Tetrahydrofuran	2019/05/17		91	%	70 - 130
			1,4-Dioxane	2019/05/17		102	%	70 - 130
			Naphthalene	2019/05/17		88		70 - 130
			•	• •		95	%	
			Total Xylenes	2019/05/17 2019/05/17			%	70 - 13
			1,1,1,2-Tetrachloroethane	• •		105	%	70 - 13
			Vinyl Bromide	2019/05/17		98	%	70 - 13
			Propene	2019/05/17		82	%	70 - 13
			2,2,4-Trimethylpentane	2019/05/17		98	%	70 - 13
			Carbon Disulfide	2019/05/17		105	%	70 - 13
			Vinyl Acetate	2019/05/17		67 (1)	%	70 - 13
L27616	LSY	Method Blank	Bromochloromethane	2019/05/17		94	%	60 - 14
			D5-Chlorobenzene	2019/05/17		94	%	60 - 1
			Difluorobenzene	2019/05/17		95	%	60 - 1
			Dichlorodifluoromethane (FREON 12)	2019/05/17	<0.20		ppbv	
			1,2-Dichlorotetrafluoroethane	2019/05/17	<0.17		ppbv	
			Chloromethane	2019/05/17	< 0.30		ppbv	
			Vinyl Chloride	2019/05/17	<0.10		ppbv	
			Chloroethane	2019/05/17	<0.30		ppbv	
			1,3-Butadiene	2019/05/17	<0.50		ppbv	
			Trichlorofluoromethane (FREON 11)	2019/05/17	<0.20		ppbv	
			Ethanol (ethyl alcohol)	2019/05/17	<1.0		ppbv	
			Trichlorotrifluoroethane	2019/05/17	<0.15			
							ppbv	
			2-propanol	2019/05/17	<1.0		ppbv	
			2-Propanone	2019/05/17	<0.60		ppbv	
			Methyl Ethyl Ketone (2-Butanone)	2019/05/17	<0.20		ppbv	
			Methyl Isobutyl Ketone	2019/05/17	<0.20		ppbv	
			Methyl Butyl Ketone (2-Hexanone)	2019/05/17	<1.0		ppbv	
			Methyl t-butyl ether (MTBE)	2019/05/17	<0.20		ppbv	
			Ethyl Acetate	2019/05/17	<1.0		ppbv	
			1,1-Dichloroethylene	2019/05/17	<0.10		ppbv	
			cis-1,2-Dichloroethylene	2019/05/17	<0.10		ppbv	
			trans-1,2-Dichloroethylene	2019/05/17	<0.10		ppbv	
			Methylene Chloride(Dichloromethane)	2019/05/17	< 0.60		ppbv	
			Chloroform	2019/05/17	< 0.10		ppbv	
			Carbon Tetrachloride	2019/05/17	<0.10		ppbv	
			1,1-Dichloroethane	2019/05/17	<0.10		ppbv	
			1,2-Dichloroethane	2019/05/17	<0.10		ppbv	
			Ethylene Dibromide	2019/05/17	<0.10		ppbv	
			1,1,1-Trichloroethane	2019/05/17	<0.10		ppbv	
			1,1,2-Trichloroethane	2019/05/17	<0.10			
							ppbv	
			1,1,2,2-Tetrachloroethane	2019/05/17	<0.10		ppbv	
			cis-1,3-Dichloropropene	2019/05/17	<0.10		ppbv	
			trans-1,3-Dichloropropene	2019/05/17	<0.10		ppbv	
			1,2-Dichloropropane	2019/05/17	<0.10		ppbv	
			Bromomethane	2019/05/17	<0.10		ppbv	
			Bromoform	2019/05/17	<0.20		ppbv	
			Bromodichloromethane	2019/05/17	<0.20		ppbv	
			Dibromochloromethane	2019/05/17	<0.20		ppbv	
			Trichloroethylene	2019/05/17	<0.10		ppbv	

Clifton Associates Ltd. Client Project #: CG2430.1E11

Sampler Initials: DB

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC		007				5		06
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Tetrachloroethylene	2019/05/17	<0.10		ppbv	
			Benzene	2019/05/17	<0.10		ppbv	
			Toluene	2019/05/17	<0.10		ppbv	
			Ethylbenzene	2019/05/17	<0.10		ppbv	
			p+m-Xylene	2019/05/17	<0.20		ppbv	
			o-Xylene	2019/05/17	<0.10		ppbv	
			Styrene	2019/05/17	<0.10		ppbv	
			4-ethyltoluene	2019/05/17	<0.50		ppbv	
			1,3,5-Trimethylbenzene	2019/05/17	<0.50		ppbv	
			1,2,4-Trimethylbenzene	2019/05/17	<0.50		ppbv	
			Chlorobenzene	2019/05/17	<0.10		ppbv	
			Benzyl chloride	2019/05/17	<0.50		ppbv	
			1,3-Dichlorobenzene	2019/05/17	<0.40		ppbv	
			1,4-Dichlorobenzene	2019/05/17	< 0.10		ppbv	
			1,2-Dichlorobenzene	2019/05/17	< 0.10		ppbv	
			1,2,4-Trichlorobenzene	2019/05/17	<0.50		ppbv	
			Hexachlorobutadiene	2019/05/17	<0.50		ppbv	
			Hexane	2019/05/17	<0.20		ppbv	
			Heptane	2019/05/17	<0.30		ppbv	
			Cyclohexane	2019/05/17	<0.20		ppbv	
			Tetrahydrofuran	2019/05/17	< 0.40		ppbv	
			1,4-Dioxane	2019/05/17	<1.0		ppbv	
			Naphthalene	2019/05/17	<0.20		ppbv	
			Total Xylenes	2019/05/17	<0.30		ppbv	
			1,1,1,2-Tetrachloroethane	2019/05/17	<0.10		ppbv	
			Vinyl Bromide	2019/05/17	<0.20		ppbv	
			Propene	2019/05/17	<0.50		ppbv	
			2,2,4-Trimethylpentane	2019/05/17	<0.20		ppbv	
			Carbon Disulfide	2019/05/17	<0.50		ppbv	
			Vinyl Acetate	2019/05/17	<0.20		ppbv	
130808	LSY	Method Blank	Aliphatic >C5-C6	2019/05/17	<5.0		ug/m3	
130000	LJI	Wethou blank	Aliphatic >C6-C8	2019/05/17	<5.0		ug/m3	
			Aliphatic >C8-C10	2019/05/17	<5.0		ug/m3	
			•	2019/05/17				
			Aliphatic > C10 - C12		<5.0		ug/m3	
			Aliphatic >C12-C16 Aromatic >C7-C8 (TEX Excluded)	2019/05/17	<5.0 <5.0		ug/m3	
			•	2019/05/17			ug/m3 ug/m3	
			Aromatic > C10 C13	2019/05/17	<5.0			
			Aromatic >C10-C12	2019/05/17	<5.0		ug/m3	
120000	LCV	DDD	Aromatic >C12-C16	2019/05/17	<5.0		ug/m3	25
130808	LSY	RPD	Aliphatic > C5-C6	2019/05/17	NC		%	25
			Aliphatic >C6-C8	2019/05/17	2.4		%	25
			Aliphatic >C8-C10	2019/05/17	5.2		%	25
			Aliphatic >C10-C12	2019/05/17	19		%	25
			Aliphatic >C12-C16	2019/05/17	NC		%	25
			Aromatic >C7-C8 (TEX Excluded)	2019/05/17	NC		%	25
			Aromatic >C8-C10	2019/05/17	NC		%	25
			Aromatic >C10-C12	2019/05/17	NC		%	25
			Aromatic >C12-C16	2019/05/17	NC		%	25
130814	LSY	Method Blank	F1-BTEX, C6-C10 (as Toluene)	2019/05/17	<5.0		ug/m3	
			F2, C10-C16 (as Decane)	2019/05/17	<5.0		ug/m3	
142302	A1S	Method Blank	Oxygen	2019/05/24	<0.1		% v/v	
			Nitrogen	2019/05/24	<0.1		% v/v	
			Methane	2019/05/24	<0.1		% v/v	
			Carbon Dioxide	2019/05/24	<0.1		% v/v	

Clifton Associates Ltd. Client Project #: CG2430.1E11

Sampler Initials: DB

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6142302	A1S	RPD [JSZ220-01]	Oxygen	2019/05/24	0.099		%	20
			Nitrogen	2019/05/24	0.13		%	20
			Methane	2019/05/24	NC		%	20
			Carbon Dioxide	2019/05/24	5.9		%	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

Clifton Associates Ltd. Client Project #: CG2430.1E11

Sampler Initials: DB

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Mauren Smith	
Maureen Smith, Supervisor, Volatiles	
Minhell	
Tom Mitchell, B.Sc. Supervisor, Compressed Gases	

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Chain of Custody Form - S	Summa TM (Canis	tei				#		0/	ICI	11				408	65
Maxima Group Company 6740 Campobello Rd Mississauga Ontario, L5N 2I www.maxxam.ca	Fax: (905) 817-5700) 817-5777						3 /	TU		ČAM F		02 /2 (SIS RE		Page 1 c	f
INVOICE INFORMATION Company Name: CULTON ACRO CUT Company N	REPORT INFORMATIO	N							(Y)	SII			CA			
	lame:					1	AL		. 6	ctio			S		8, 1	
Contact Name: DANIEC RODAT Project Mai	nager:		(BHJ)	1g)			DUSTRI		ence T	bon Fra	(91:	pecify	CASE	F		
Address: 2222 ROAVENE Address:			ches o	es of F		AIR	HALINI		s (refer	drocarl	(C10-C	sase st		SER		GED
E-mail: Daniel Budana E-mail: Ph: 4036906940 Ph:			START VACUUM (inches of Hg)	END VACUUM (inches of Hg)	VAPOUR	AMBIENT/INDOOR AIR	AMBIENT/COMMERCIAL/INDUSTRIAL	B GAS	FULL LIST OF VOCs (reference TO15A)	Aromatic/Aliphatic Hydrocarbon Fractions	F1 (C6-C10) and F2 (C10-C16)	Selected VOC's - please specify	FIXED	HROMATOGRAM	12	CANISTERS NOT USED
Ph: 403 690 6940 Ph: -			STARTV	END VAC	SOIL VAF	AMBIEN	AMBIENT	SUB-SLAB	FULL LIS	Aromatic/	F1 (C6-C	Selected	Other (CHPL		CANISTE
Field Sample ID	Canister Serial #	Collection Date												j		
321	2242 031	-11-1	95	1.0	X				X	X	X		X	X		
322	2390 0778		9.0	4.0	X				X	X	X		2	$\hat{\mathbf{x}}$		
				River						/-						
			107	A SHARE		Pile.	917									
			7 11			11/8			,							
			Sec.			0,00				- 8	10 11					
			7/15													
									-							
									1							
									8							
TAT Requirement STD 10 Business day Rush 5 Business day * Rush 2 Business day * Rush Other * PROJECT INFORMATI Project #: CC24 Name: PO #: Maxxam Quote #: Maxxam Contact:		F	REQ EDD Regular		ON 15 ON 41 BC CS	19		soil va 2) ple	ase indi pour or ase list	ambier all canis	ristin	7-May a (Ma	v if your v-190 ria) B	8:37		
* need approval from Maxxam Task Order/Line Item	6.0										B91	1239	5			
Client Signature:	Received by:	n D	An	14	ort	on					4	AIR	-001			
Date/Time: 16/4/2019 14:48	Date/Time: 20 F	9/05/	116	, 14	1:4	9		PLEA	SE RI	ETURN	ALL U	NUSEC	EQUI	PMENT	5	
Unless otherwise agreed to in writing, work submitted on this Chain of Custody is which are available for viewing at www.maxxam.ca/terms. COC-1003 (11/2017)	Nuch	Terms and Con	Her						nent is ac		oment and		nce of oui	terms		

Data Path : T:\MSD53\Data\190517\

Data File : R051714.D

Acq On : 17 May 2019 19:37 Operator : LSY

Sample : JSZ221 50ML

Misc

ALS Vial : 14 Sample Multiplier: 1

Quant Time: May 22 13:58:10 2019
Quant Method: T:\MSD53\Data\Methods\T015_190503.M

Quant Title : TO15 calibration, INTstd \overline{L} ot#160-401162459-1, EXP. 2019/04/13

QLast Update: Mon May 06 08:51:30 2019

Compound	R.T.	QIon	Response	Conc Units	Dev(Min)
Internal Standards 1) BROMOCHLOROMETHANE	11.833		578901	26.30 PPBV	
31) 1,4-DIFLUOROBENZENE 52) d5-CHLOROBENZENE	13.735 18.785	$\begin{array}{c} 114 \\ 117 \end{array}$		26.80 PPBV 26.80 PPBV	
Target Compounds					Qvalue
Dichlorodifluoromethane	5.417		13306	0.26 ppbv	
11) Ethanol	7.293	31	51646	5.39 ppbv	
13) Trichlorofluoromethane	7.949	101	6836	0.14 ppbv	
15) Acetone	8.150	43		1.12 ppbv	
17) Carbon Disulfide	9.489	76	30557	0.50 ppbv	
18) Dichloromethane	9.288		13614	0.59 ppbv	
24) Hexane	11.150	57	3378	0.10 ppbv	
25) 2-Butanone (MEK)	11.070	43	3297	0.10 ppbv	
27) Chloroform	11.954	83	9720	0.22 ppbv	
39) Trichloroethylene	14.378	130	179972	5.01 ppbv	
47) Toluene	16.468	91	41503	0.48 ppbv	
55) Ethylbenzene	19.173	91	24542	0.21 ppbv	99
56) M&P-Xylene	19.401	91	85149m	0.92 ppbv	
59) o-Xylene	20.084	91	28276	0.31 ppbv	
63) 4-Ethyltoluene	21.946	105	30956	0.24 ppbv	94
64) 1,3,5-Trimethylbenzene	22.040	105	29975	0.26 ppbv	97
65) Decane	22.536	57	541002	8.42 ppbv	97
66) 1,2,4-Trimethylbenzene	22.777	105	89063	0.78 ppbv	98
74) Naphthalene	27.532	128	11399	0.11 ppbv	99

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path: T:\MSD53\Data\190517\

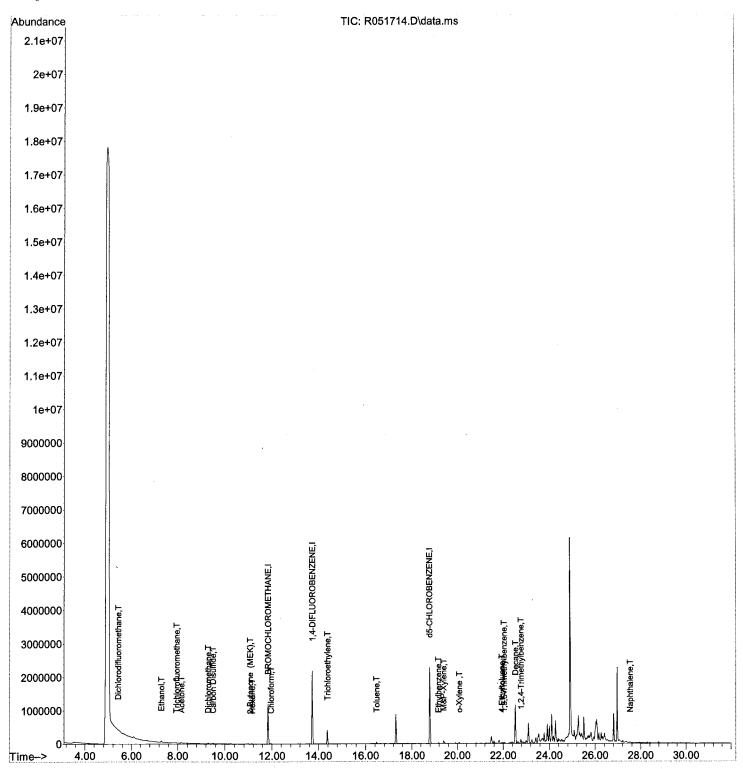
Data File : R051714.D

Acq On : 17 May 2019 19:37

Operator : LSY

Sample : JSZ221 50ML

Misc


ALS Vial : 14 Sample Multiplier: 1

Quant Time: May 22 13:58:10 2019

Quant Method: T:\MSD53\Data\Methods\TO15_190503.M

Quant Title : TO15 calibration, INTstd \overline{L} ot#160-401162459-1, EXP. 2019/04/13

QLast Update : Mon May 06 08:51:30 2019

Data Path : T:\MSD53\Data\190517\

Data File : R051716.D

Acq On : 17 May 2019 21:13

Operator : LSY

Sample : JSZ220 100ML

Misc

ALS Vial : 16 Sample Multiplier: 1

Quant Time: May 21 08:34:35 2019

Quant Method: T:\MSD53\Data\Methods\T015_190503.M

Quant Title : TO15 calibration, INTstd Lot#160-401162459-1, EXP. 2019/04/13

QLast Update: Mon May 06 08:51:30 2019

C	ompound	R.T.	QIon	Response	Conc Ur	nits	Dev	(Min)
Internal	Standards							
1) BRO	MOCHLOROMETHANE	11.833	130	595857	26.30	PPBV		0.00
31) 1,4	-DIFLUOROBENZENE	13.735	114	2286878	26.80	PPBV		0.00
	CHLOROBENZENE	18.798	117	2028743	26.80	PPBV		0.00
Target C	ompounds						Qv	alue
2) Pro	-	5.310	41	18904	1.49	ppbv	#	79
3) Dic	hlorodifluoromethane	5.404				ppbv		100
4) Chl	oromethane	5.766	50	3903				88
7) But	ane	6.328		1887510	75.89	ppbv		98
11) Eth	anol	7.306		15804		ppbv		93
13) Tri	chlorofluoromethane	7.962		14049		ppbv		99
15) Ace	tone	8.136	43	49800	2.04	ppbv		
17) Carl	bon Disulfide	9.489	76	26319		ppbv		98
18) Dic	hloromethane	9.302				ppbv		1
24) Hex	ane	11.164	57	8446		ppbv		43
25) 2-B	utanone (MEK)	11.056		6682				92
27) Chl	oroform	11.914						88
30) 1,2	-Dichloroethane	12.865	62					95
33) Cyc.	lohexane	13.334				ppbv		98
35) Ben	zene	13.226				ppbv		100
36) 2,2	,4-Trimethylpentane			10728252	105.29			100
44) Met	hyl Cyclohexane	15.276	83	4714				89
	uene	16.468		5361698				99
51) Tet:	rachloroethylene	17.687						98
55) Eth	ylbenzene			9949				97
59) o-X	ylene			41927				99
65) Dec	ane	22.536	57	10405	0.16	ppbv		98

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

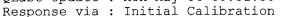
Data Path: T:\MSD53\Data\190517\

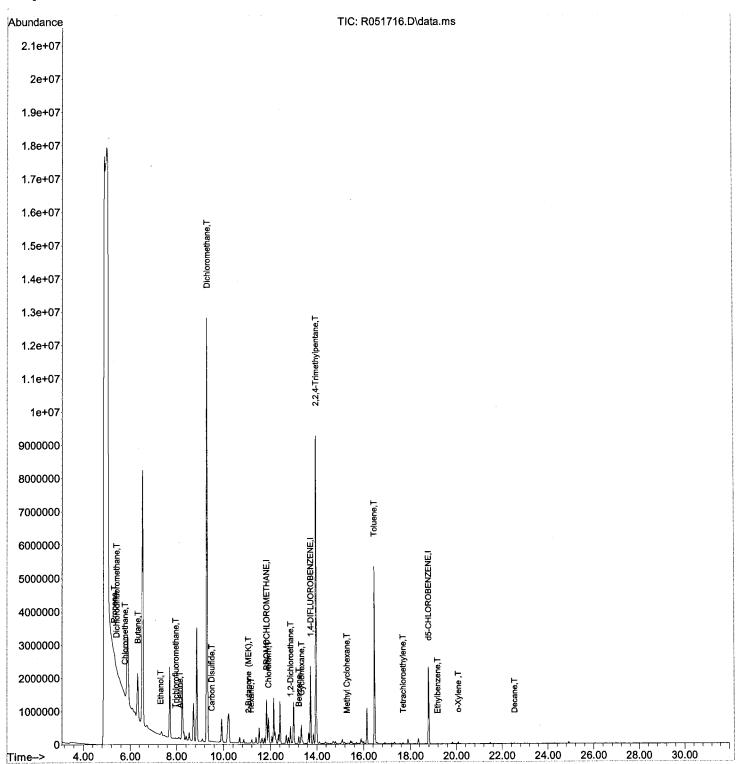
Data File: R051716.D

: 17 May 2019 21:13 Acq On

: LSY Operator

Sample : JSZ220 100ML


Misc


ALS Vial : 16 Sample Multiplier: 1

Quant Time: May 21 08:34:35 2019

Quant Method: T:\MSD53\Data\Methods\T015 190503.M

Quant Title : TO15 calibration, INTstd Lot#160-401162459-1, EXP. 2019/04/13 QLast Update : Mon May 06 08:51:30 2019

Data Path : T:\MSD53\Data\190517\

Data File : R051718.D

Acq On : 17 May 2019 22:49
Operator : LSY

: JSZ222 Sample 100ML

Misc

ALS Vial : 18 Sample Multiplier: 1

Quant Time: May 21 08:46:10 2019

Quant Method: T:\MSD53\Data\Methods\T015_190503.M

Quant Title : TO15 calibration, INTstd Lot#160-401162459-1, EXP. 2019/04/13 QLast Update : Mon May 06 08:51:30 2019

Compound	R.T.	QIon	Response	Conc Un	its I	Dev(Min)
Internal Standards						
1) BROMOCHLOROMETHANE	11.833	130	588010	26.30	PPBV	0.00
31) 1,4-DIFLUOROBENZENE	13.735	114	2261937	26.80	PPBV	0.00
52) d5-CHLOROBENZENE	18.798	117	2025625	26.80	PPBV	0.00
Target Compounds						Qvalue
3) Dichlorodifluoromethane	5.417	85	25109	0.48		99
11) Ethanol	7.306	31	40690	4.18		
13) Trichlorofluoromethane	7.949	101	13566	0.27	ppbv	
15) Acetone	8.150	43	38864	1.61	ppbv	# 85
17) Carbon Disulfide	9.489	76	46098			98
18) Dichloromethane	9.302	49	7646	0.33		90
24) Hexane	11.150	57	3169	0.10		
25) 2-Butanone (MEK)	11.070	43	4730	0.14	ppbv	100
27) Chloroform	11.954	83	38694	0.87		99
29) Tetrahydrofuran	12.182	42	2004	0.09		
39) Trichloroethylene	14.378	130	245874	6.71		99
47) Toluene	16.468	91	48713	0.55		98
51) Tetrachloroethylene	17.687		4551	0.09		95
55) Ethylbenzene	19.174	91	34276	0.29		99
56) M&P-Xylene	19.401	91	125043m	1.31		
59) o-Xylene	20.084		50510	0.54		99
63) 4-Ethyltoluene	21.946	105	46282	0.34		98
64) 1,3,5-Trimethylbenzene	22.040	105	51995	0.44		97
65) Decane	22.536	57	98249	1.48		
66) 1,2,4-Trimethylbenzene	22.777	105	187495	1.58	ppbv	.98
70) 1,2,3-Trimethylbenzene	23.554	105	42242m	0.37		
72) Dodecane	26.969			5.23		
74) Naphthalene	27.532	128	17464	0.16	ppbv	99

^(#) = qualifier out of range (m) = manual integration (+) = signals summed

Data Path: T:\MSD53\Data\190517\

Data File: R051718.D

Acq On : 17 May 2019 22:49

Operator : LSY

Sample : JSZ222 100ML

Misc


ALS Vial : 18 Sample Multiplier: 1

Quant Time: May 21 08:46:10 2019

Quant Method: T:\MSD53\Data\Methods\T015_190503.M

Quant Title : TO15 calibration, INTstd \overline{L} ot#160-401162459-1, EXP. 2019/04/13

QLast Update: Mon May 06 08:51:30 2019

